

University of Kerala

Discipline	CHEMISTRY						
Course Code	UK4DSECHE200						
Course Title	ENVIRONMENT	AL CHEMI	STRY II				
Type of Course	DSE						
Semester	4						
Academic Level	200 - 299			1			
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	3hours	-	2	5		
Pre-requisites	1. Fundamental co	ncept of Aqu	atic chemistr	·y			
	2. General chemist		.1	P			
	3. UK3DSECHE20						
Course Summary	This course provide			_			
	processes and interactions that occur in natural waters, including oceans,						
	rivers, lakes, and groundwater. This course also describes about water						
	pollution and its consequences. This course also highlights the methods of						
	determining water	quality paran	neters and tre	eatment of was	te water.		

Detailed Syllabus:

Module	Unit	Content ENVIRONMENTAL CHEMISTRY II	Hrs 75				
I	INTR	ODUCTION TO AQUATIC CHEMISTRY	9				
	1	Aquatic Chemistry: Introduction, structure and physico-chemical properties of water.	1				
	2	Composition of water bodies-ocean, lakes, streams, rivers and wetlands.	2				
	Reactions in water-Acid-base and Redox reactions. Chemical speciation, Biomagnification-Elementary idea only.						
GR.	5	Aquatic biochemical process- Microbially mediated redox reactions, carbon transformation by bacteria, Nitrogen transformation by bacteria.	3				
) II	WAT	ER POLLUTION	9				
	6	Introduction, Types and sources of water Pollution.	2				
	7	Eutrophication-Causes, Effects and control measures.					
	8	Organic matter in water- origin and environmental issues.	2				

		Inorganic pollutants- acid					
		mine drainage, heavy metals (Hg, Pb, As,Cd).					
		Environmental impacts of water pollutants- Sediments,	2				
	9	microplastics, Soaps and Detergents.					
	10	Health effects of water pollution.	2				
III		TER QUALITY ANALYSIS	18				
	11	Objectives of water analysis, Chemical substances affecting	/				
		potability (Basic concepts and determination)- colour by colorimetric					
		method, odour, turbidity by Jackson Candle Turbidimeter &	4				
		nephelometer, conductivity - electrical conductivity by conductivity					
		meter, pH by electrometric method.					
	12	Acidity and Alkalinity by Titrimetric method, Chloride by Mohr's					
		method, Total Solid - suspended solids & dissolved solids by					
		gravimetric method and Hardness by complexometric method.	4				
	13	Chemical substances affecting health (Basic Concepts and					
		Determination) - Ammonia by Spectrophotometric Nessler's Method,					
		Sulphate by Volumetric Method, Phosphate by Spectrophotometric	6				
		Method, Fluoride by Spadns Method.					
	14	Chemical substances indicative of pollution (Basic Concepts and					
		Determination) – Dissolved Oxygen and BOD by Modified					
		Winkler Method, COD by Titrimetric method,	4				
		Total Organic Carbon by TOC Analyser					
IV	WAS	TE WATER TREATMENT	9				
		Criteria of water purity. Waste water treatment methods-	4				
	15	Conventional water treatment methods- aeration, settling or					
		sedimentation, coagulation, filtration and disinfection					
	16	Advanced waste water treatment methods: reverse	4				
	10	osmosis, electrodialysis, nutrient removal					
		Water conservation- concept and significance	1				
V		ER QUALITY ANALYSIS PRACTICALS I	30				
		minary examination of different water samples (Colour, Odour,					
	Tem	perature, Turbidity, p ^H) – Minimum 5 samples					
		rmination of conductivity of water – Using conductivity meter –					
_^		mum 3 samples	-				
	Percentage of chlorine available in bleaching powder – Minimum 3 samples						
		surement of chloride, sulphate and salinity of water sample by simple					
AX		ion method (AgNO ₃ and potassium chromate)- Minimum 3 samples	_				
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Dete	rmination of DO, BOD and COD-Minimum 3 samples					

<u>References</u>

1. Balram Pani. *Text Book of Environmental Chemistry*. I.K. International Publishing House Pvt. Ltd., 2nd ed., 2017.

- 2. A. K. De. *Environmental Chemistry*. 7th ed., New Age International Publishers, New Delhi.
- 3. Gary W. van Loon and Stephen J. Duffy. *Environmental Chemistry: A Global Perspective*. 4th ed., Oxford University Press, 2017.
- 4. H. Kaur. Environmental Chemistry. Pragati Prakashan, 2023.
- 5. V. K. Ahluwalia. Environmental Chemistry. 2nd ed., Ane Books Pvt. Ltd., 2014 (or later).
- 6. Ronald A. Bailey, Herbert M. Clark, James P. Ferris, Sonja Krause & Robert L. Strong. *Chemistry of the Environment*. 2nd ed., Academic Press.
- 7. Asim K. Das. *Environmental Chemistry with Green Chemistry*. Books & Allied (P) Ltd., latest known edition.
- 8. G. S. Sodhi. Fundamentals of Environmental Chemistry. 2nd ed., Narosa Publishing House.
- 9. S. M. Khopkar. Environmental Pollution Analysis. Wiley Eastern Ltd., New Delhi.
- 10. S. S. Dara. *A Textbook of Engineering Chemistry*. S. Chand & Company Ltd., New Delhi.

Course outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO1	Able to describe the chemical composition and physico- chemical properties of water	An	PSO - 1,3
CO2	Describe the main sources of water pollution, the main types of pollutant and their environmental and health impacts	An	PSO - 1,3
CO3	Comprehensive understanding of fundamental principles and analytical methods essential for evaluating the quality of water	E	PSO - 1,3
CO4	Outline how sewage may be treated before discharge to the environment and realise the importance of water conservation	С	PSO - 1,2,3,4
CO5	Understand the appropriate methods and principle behind the practical protocols	С	PSO - 1,3

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: ENVIRONMENTAL CHEMISTRY II

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L) /Tutorial (T)	Practical (P)	
-----------	----	--------	--------------------	-----------------------	---------------------------------	---------------	--

1	CO1	PSO - 1,3	An	С	L	-
2	CO2	PSO - 1,3	An	F, C	L	-
3	CO3	PSO - 1,3	Е	С	L	- 4
4	CO4	PSO - 1,2,3,4	С	F, C	L	- /
5	CO5	PSO - 1,3	С	F, C	-	P

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive Mapping of COs with PSOs and POs:

No:
CO 1
CO 2
CO 3
CO 4
CO 5

PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
1	1	1	-	ı	1	1	-		-	-	-	-
1	1	1	1	1	1	1			1	ı	ı	1
1	-	1	-	1	1	1		-	1	-	-	1
1	2	1	1		1	1)-	-	-	-	-	-
1	-	1	-	•	1	1	_	_	-	-	-	-

Correlation Levels:

Level	Correlation					
-	Nil					
1,0	Slightly / Low					
2	Moderate / Medium					
3	Substantial / High					

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics:

\mathbf{O}	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	√			✓
CO 2	√	√		✓
CO 3	✓	√		✓
CO 4	√			✓
CO 5	√			✓