

University of Kerala

Discipline	Mathematics								
Course Code	UK4DSCMAT201								
Course Title	Partial 1	Partial Differentiation and Introduction to Abstract Algebra							
Type of Course	DSC	DSC							
Semester	IV	IV							
Academic Level	200-299								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
	per week Per week Hours per week								
	4	4		1	5				
Pre-requisites	Awareness of Differential Calculus and Set theory								
Course Summary	This course includes Partial differentiation and basic Abstract Algebra								

Detailed Syllabus

Module	Unit		Contents	Hrs			
I		Partial Differentiation I					
	1 Functions of two or more variables, Limits And Continuity,						
		Partial Do	erivatives, Differentiability, Differentials, And				
		Local Line	earity, The Chain Rule.				
	Chapt	er 13: Secti	on 13.1, 13.2, 13.3, 13.4, 13.5 of Text [2]				
II	Partial Differentiation II						
	2	2 Directional Derivatives And Gradients, Tangent Planes And					
	Normal Vectors, Maxima And Minima Of Functions Of Two						
	Variables, Lagrange Multipliers.						
	Chapter 13: Section 13.6, 13.7, 13.8, 13.9 of Text [2]						
III	Groups 1						
	3	Binary Op	perations, Groups, Abelian Examples, Subgroups,				
	Cyclic Groups.						

Module	Unit	Contents	Hrs						
	Chapter 1 : Sections 1, 2, 3, 5, 6 of Text [1]								
IV		Cosets	18						
	4	Non-abelian Examples, Groups of Permutations, Cosets and							
		Theorem of Lagrange.							
	Chapt	Chapter 1 : Section 4, Chapter 2 : Sections 8 and 10 of Text[1]							
	Assignments can be given using Sagemath for solving the problems in the								
	above	above modules. Chapters 3, 4, 5, 6 of Text [3] (not meant for examination)							

Textbooks

- 1. J. B. Fraleigh, Neal.E.Brand A First Course in Abstract Algebra, Eighth Edition, Pearson Education Inc, 2022
- 2. Howard Anton, I Bivens, S Davis. Calculus, 10th Edition, John Wiley & Sons, 2012.
- 3. Thomas. W. Judson, Stephen. F. Austin *Abstract Algebra Theory and Applications*, State University, Robert A Beezer, *Sage Exercises for Abstract Algebra*, University of Puget Sound, 2020.

References

- 1. I. N. Herstein, Topics in Algebra, Second Edition, Wiley, 2006.
- 2. Joel Hass, Maurice D. Weir, Thomas' Calculus Early Transcendentals, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 3. Joseph. A. Gallian, Contemporary Abstract Algebra, Eighth Edition, Brooks Cole Cengage Learning, 2012.
- 4. Michael Artin, Algebra, Second Edition, Pearson Education, 2023.
- 5. J Stewart, Calculus with Early Transcendental Functions, 7th Edition, Cengage India Private Limited, 2008.
- 6. G B Thomas, R L Finney, Calculus, 9th Edition, Addison-Weseley Publishing Company, 2004.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Define multivariable functions and relate it to single variable functions	PSO5, PO1, 2, 3, 4, 5, 6, 7	R, U	F,C	L	
CO 2	Describe limits, continuity and partial derivatives	PSO1, PO1, 2, 3, 4, 5, 6, 7	U,E	P	L	
CO 3	Solve maximization and minimization problems using partial derivatives	PSO2, PO1, 2, 3, 4, 5, 6, 7	Ap	P	L	
CO 4	Explain the concepts of binary operations and groups and classify the groups as abelian, non-abelian and cycle groups	PSO4, PO1, 2, 3, 4, 5, 6, 7	U,An	F,C	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PS02	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	2	1	1	3	1	2	2	1	3	1	2	2	
CO2	3	2	2	2	2	1	2	3	2	2	1	2	1	
CO3	2	3	2	2	2	1	2	3	2	2	1	2	1	
CO4	2	2	2	3	2	1	3	2	2	2	1	2	1	

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	✓	\checkmark		
CO2	✓	✓		✓
CO3	✓	✓		
CO4	✓	✓		√

