

Discipline	CHEMISTRY				
Course Code	UK3DSCCHE20	00			
Course Title	PHYSICAL CHEMISTRY I				
Type of Course	DSC				
Semester	3				
Academic Level	200 – 299				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	4	3 hours	ı	2 hours	5
Pre-requisites	Higher secondary level science knowledge				
	2. Basic understanding of calculus is preferred.				
Course Summary	This physical chemistry course covers a broad range of topics including				
	solid state, liquid state, gaseous state, dilute solutions, and colloids,				
	providing students with a comprehensive understanding of the properties				
	and behaviours of matter at various states and concentrations. Through				
	theoretical principles and practical experiments, students gain insights				
	these topics and to apply their knowledge to solve real-world problems.				

Detailed Syllabus:

Module	Unit	Content	Hrs
		PHYSICAL CHEMISTRY I	75
Ι	I SOLID STATE		9
	1	Amorphous and Crystalline solids. Isotropy and anisotropy, size and	2
		shape of crystal, Interfacial angle, types of crystals: molecular crystals,	
		ionic crystals, covalent crystals and metallic crystals- examples and	
		properties.	
	2	Symmetry of crystals- plane of symmetry, axis of symmetry, centre of	2
		symmetry (definitions and basic idea only), Seven basic crystal	
	systems, Space lattice and unit cell, Bravais lattices, (unit cell parameters and examples of 14 Bravis lattices), close packing structures of cubic and orthorhombic space lattices.		
	3	Law of constancy of interfacial angles, Laws of rational indices, Miller	2
X		indices, Representation of lattice planes of cubic crystals, interplanar	
7		spacing in crystals, Determination of Avogadro number from	
		crystallographic data	
	4	X-ray diffraction studies of crystals, Bragg's equation – derivation and	2
		applications, Rotating crystal and powder method. Structure of NaCl	
		and CsCl, Imperfections in crystals. Stoichiometric and	

		Nonstoichiometric defects, point defects – Schottky and Frenkel		
		defects, F-centre		
	5	Energy band theory of Conductor, Semiconductors and insulators,	1	
		Glasses		
II		JID STATE	9	
	6	Physical properties of liquids; vapour pressure, surface tension,	3	
		viscosity, and Refractive Index and their determination. Factors		
		affecting surface tension and viscosity, Interfacial tension, Surface		
		active agent, Explanation of cleansing action of detergents.		
	7	Determination of Surface tension- capillary rise and stalagmometer	3	
		method		
		Viscosity- Poiseuilles equation, Determination of viscosity- Ostwald's		
		viscometer		
		Refractive index determination by Abbe refractometer		
	8	Liquid crystals- introduction, characterization of liquid crystals, Types	3	
		-smectic, nematic and cholesteric liquid crystals- examples; Disc		
		shaped liquid crystals, Polymer liquid crystals. uses of liquid crystals		
III		EOUS STATE	9	
	9	Ideal gas, Ideal gas equation, gas constant: values in different units	2	
		(JK ⁻¹ mol ⁻¹ , L atm K ⁻¹ mol ⁻¹ , cal K ⁻¹ mol ⁻¹)		
		Dalton' Law of Partial pressure- Definition and mathematical		
		expression.		
		Postulates of Kinetic theory of Gases and derivation of the kinetic gas		
		equation; collision frequency; collision diameter; mean free path and		
		viscosity of gases, including their temperature and pressure		
		dependence, relation between mean free path and coefficient of		
	1.0	viscosity; variation of viscosity with temperature and pressure.	2	
	10	Maxwell distribution and its use in evaluating molecular velocities	2	
		(average, root mean square and most probable) and average kinetic		
	1.1	energy, law of equipartitions of energy and degrees of freedom.	2	
	11	Behaviour of real gases: Deviations from ideal gas behaviour,	2	
		compressibility factor, Z, and its variation with pressure for different		
		gases, Causes of deviation from ideal behaviour. Z-P plots of ideal gas		
		and the real gases H ₂ , He, NH ₃ , CO and methane at 0°C, Z-P plots of		
4	12	N ₂ at several temperatures.	1	
	12	Vander Waals equation of state, its derivation and application in explaining real gas behaviour. Vander Waal's equation at low and high	l 1	
11	\mathcal{I}	pressures and at high temperature.		
	13	Law of corresponding states, liquefaction of gas, inversion temperature	2	
\	13	PV isotherm of Carbon dioxide, critical state, relation between critical		
		constants and van der Waals constants, Correction factors,		
		Experimental determination critical constants, Boyle temperature,		
		Boyle temperature in terms of van der waal's constant. Virial		
		equation of state and virial coefficients. (no derivations).		
IV	DILI	JTE SOLUTIONS AND COLLOIDS	18	
1 1	DILL	TE SOLUTIONS AND COLLOIDS	10	

	14	Dilute solutions: Binary solutions, Concentration- Molarity, Molality,	2
		Normality and Mole fraction. (numerical problems)	
15		Raoult's Law for solutions of non-volatile solutes, vapour pressure of	1
		ideal solutions and relative lowering of vapour pressure.	
	16	Colligative properties- lowering of vapour pressure; elevation of	4
		boiling point and depression in freezing point; molal elevation	
		constant, molal depression constant, Thermodynamic derivation of ΔT ;	
		Osmosis and Osmotic pressure, van't Hoff equation; Isotonic,	7.3
		hypertonic and hypotonic solutions, Abnormal molecular mass and	
		van't Hoff factor, Determination of degree of dissociation and	
		association, Reverse osmosis (numerical problems).	
	17	Experimental determination of molecular mass of solutes by cooling	2
		curve method, Rast's and Beckmann methods	
	18	Colloids: Classification of colloids – Preparation of colloids	2
	19	Purification of colloids – dialysis, electrodialysis, hot dialysis, ultra	2
		filtration ultra centrifugation	
	20	Kinetic, optical and electrical properties of colloids – Tyndall effect &	3
		applications - Ultra microscope, Electrical double layer and zeta	
		potential - Coagulation of colloids, Hardy-Schulz rule, Gold number,	
		sedimentation and streaming potential	
	21	Gels: Elastic and non-elastic gels, Imbibition and syneresis, Micelles	1
		and critical micelle concentration	
	22	Application of colloids – Cottrell precipitator, purification of water and	1
		delta formation.	
V	PRAC	CTICALS: PHYSICAL CHEMISTRY PRACTICALS	30
		A minimum of 8 practical experiments (Minimum one each from A & B)	
	23	A. Lowering of freezing point	8
		1. Determination of K_f of solid solvent using a solute of known	
		molecular mass. (Solvent: Naphthalene, biphenyl) (Solute:	
		Naphthalene, biphenyl, 1,4-dichlorobenzene, diphenylamine)	
		2. Determination of molecular mass of the solute using a solvent of	
		known K _f . (Solvent: Naphthalene, biphenyl) (Solute:	
		Naphthalene, biphenyl, 1,4-dichlorobenzene, diphenylamine)	
	24	B. Depression of transition temperature	8
		3. Determination of molal transition point depression constant (Kt)	
		of salt hydrate using solute of known molecular mass. (Salt	
		hydrates: sodium thiosulphate penta hydrate, hydrated sodium	
	1	acetate) (solutes: Urea, Glucose).	
X		4. Determination of molecular mass of the solute using a solvent of	
\		4. Determination of molecular mass of the solute using a solvent of known molal transition point depression constant (Kt). (Salt	
,			
		known molal transition point depression constant (Kt). (Salt hydrates: sodium thiosulphate penta hydrate, hydrated sodium acetate) (solutes: Urea, Glucose)	
\	25	known molal transition point depression constant (Kt). (Salt hydrates: sodium thiosulphate penta hydrate, hydrated sodium	4

	6. Surface tension of binary mixtures and determination of concentration of an unknown mixture	
26	D. Viscosity:	4
	7. Determination of viscosity of any three liquids	_
	8. Viscosity of binary mixtures and determination of concentration	
	of an unknown mixture	
27	E. Refractive index experiments:	4
	9. Determination of refractive indices of any three liquids	
	10. Refractive indices of KCl solutions of different concentrations	1,-
	and determination of concentration of unknown KCl solution	
28	F. Solid state:	
	11. Indexing powder XRD patterns and determination of unit cell	
	parameters of simple and/or bcc and/or fcc systems (Instructors	
	must provide the powder XRD patterns and ask students to index	
	it and calculate unit cell parameters)	

References:

Textbooks

- 1. P W Atkins, "Physical Chemistry", Oxford University Press
- 2. R L Madan, Physical Chemistry, Mc Graw Hill
- 3. Glasstone and Lewis, Elements of Physical Chemistry, Macmillan
- 4. Puri, Sharma & Pathania, Principles of Physical Chemistry, Vishal Publishing Co
- 5. P. C. Rakhit, *Physical Chemistry*, Sarat Book House, Calcutta
- 6. J. B. Yadav Advanced Practical Physical Chemistry, Krishna Prakashan Media (P) Ltd

For Further Reading

- 1. R J Selby and RA Alberty, Physical Chemistry, John Wiley &sons
- 2. Levin, Physical Chemistry, 5th edn, TMH.
- 3. Gurdeep Raj, Advanced Physical Chemistry, Goel publishing house
- 4. G W Castellan, "Physical Chemistry", Narosa Publishing House
- 5. B. Viswanathan, P. S. Raghavan, A Practical Physical Chemistry, Viva Books.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Critically analyze the structural distinctions and physical properties of crystalline and amorphous solids through symmetry concepts, crystallographic parameters, packing arrangements, X-ray diffraction techniques, and defect analysis to interpret their influence on material behavior and electronic properties.	An	PSO -1,2,3