

University of Kerala

Discipline	CHEMISTRY				
Course Code	UK3DSCCHE201				
Course Title	ESSENTIALS OF PHYSICAL CHEMISTRY				
Type of Course	DSC				
Semester	3				
Academic Level	200 - 299				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	4	3 hours	-	2 hours	5
Pre-requisites	Higher secondary level science knowledge				
	2. First & second semester DSCs (chemistry) offered by UoK				
	(preferable)				
	3. Basic knowledge in mathematics.				
Course Summary	Summary The course gives students a thorough understanding of the fundamentals				fundamentals
	of physical chemistry and how they are applied in real-world situations.				
	Topics covered include chemical and ionic equilibrium,				
	electrochemistry, crystalline states, dilute solutions, and binary liquid				
	systems. Students have practical experience in conducting physical				
	chemistry experiments and analyzing experimental data through				
	practical activities that help them build important laboratory skills.				

Detailed Syllabus:

Module	Unit	Content	Hrs
		ESSENTIALS OF PHYSICAL CHEMISTRY	75
I	CHEMICAL AND IONIC EQUILIBRIUM		
	1	Reversible reactions – K_P , K_C , and K_X and inter relationships – Free	2
		energy change and chemical equilibrium (thermodynamic derivation)	
	2	Influence of pressure and temperature on the following reactions. (i)	2
		$N_2 + 3H_2 \longrightarrow 2NH_3$ (ii) $PCl_5 \longrightarrow PCl_3 + Cl_2$ (iii) $2SO_2 + O_2 \longrightarrow 2SO_3$	
	Le Chatelier's principle and the discussion of the above reactions on		
$\langle \lambda \rangle$		basis.	
	3	Concepts of Acids and Bases, Arrhenius, Lowry-Bronsted, and Lewis	1
		concepts. HSAB Principle. Levelling effect.	
	4	pH and its determination by potentiometric method. Buffer solutions –	2
		Henderson equation, Acidic and basic buffers-examples.	

University of Kerala 8

	5	Hydrolysis of salts – degree of hydrolysis and hydrolytic constant,	2	
		Derivation of relation between K _w and K _h for salts of strong acid –		
		weak base, weak acid - strong base and weak acid - weak base.		
II	ELEC	ELECTRO CHEMISTRY		
	6 Application of conductance measurements. Conductometric titrations			
		involving strong acid – strong base, strong acid – weak base, weak		
		acid – strong base and weak acid – weak base.		
	7	EMF – Galvanic cells, measurement of emf, cell and electrode		
	,	potential, IUPAC sign convention, Reference electrodes, SHE and		
		calomel electrode, standard electrode potential,		
	8			
	0	-	3	
	0	electrode with examples, quinhydrone electrode, glass electrode		
	9 Concentration cell without transference, potentiometric titration, Fu			
TIT	cells - H ₂ - O ₂ and hydrocarbon - O ₂ type. CATALYSIS AND PHOTO CHEMISTRY			
III			9 2	
	10	General Characteristics of catalytic reactions. Different types of	2	
	11	catalysis – examples	2	
	11	Theories of catalysis (Outline of intermediate compound formation	2	
	10	theory and adsorption theory).		
	12 Enzyme catalysis – Michaelis-Menten mechanism.		2	
	13	Photo Chemistry: - Laws of Photo Chemistry, Grothus – Drapter law,	2	
		Beer Lambert's law, Einstein's laws, quantum yield, H ₂ – Cl ₂ reaction,		
	1.4	H ₂ – Br ₂ reaction	4	
	14	Fluorescence and phosphorescence, chemiluminescence and photo	1	
TX 7	DILL	sensitization	10	
IV		TE SOLUTIONS AND BINARY LIQUID SYSTEMS	18	
	15	Molarity, molality, Normality and mole fraction	5	
		Colligative property – relative lowering of vapour pressure – elevation		
		in boiling point – depression in freezing point – osmotic pressure –		
		experimental determination of osmotic pressure – Isotonic solution –		
		reverse osmosis		
	16	Abnormal molecular mass - van't Hoff factor. (Numerical Problems to	4	
		be worked out)	-	
	17	Completely miscible liquid pairs, vapour pressure - composition curve,	3	
	1	boiling point composition curve		
*	18	Ideal and non- ideal solutions, fractional distillations, azeotropes	3	
	19	Partially miscible liquids - CST, phenol- water, nicotine-water system-	3	
		Effect of impurities on miscibility and CST, Immiscible liquid pairs.		
PRACTICALS: PHYSICAL CHEMISTRY EXPERIMENTS		30		
A minimum of 5 practical experiments out of which at least one				
	each from sections I, II and III must be performed and reported.			
	20	I. Conductometry	5	
		1. Determination of cell constant		
		2. Conductometric titration of NaOH using HCl		
	21	II. Potentiometry	6	

University of Kerala 9

	3. Potentiometric titration of Fe ²⁺ versus Cr ₂ O ₇ ²⁻	
	4. Potentiometric titration of KMnO4 versus KI	
22	III. Experiments with Partially miscible liquid pairs	
	5. Critical solution temperature of phenol –water system	
	6. Influence of KCl (impurity) on the miscibility temperature of	
	Phenol-water system. Determination of concentration of given	<i>A</i>
	KCl solution	
23	IV. Adosrption Experiments	6
	7. Freundlich and Langmuir isotherms for adsorption of oxalic acid	
	on active charcoal.	J
	8. Determination of unknown concentration of oxalic acid using	
	isotherm.	
24	V. Calorimetry	5
	9. Determination of water equivalent of Calorimeter and heat of	
	neutralization of strong acid and strong base	
25 VI. Partition experiments		5
	10. Partition coefficient of iodine between CCl ₄ and H ₂ O or	
	Partition coefficient of ammonia between CHCl ₃ and H ₂ O	

References

- 1. P L Soni, O P Dharmarsha, U N Dash, *Textbook of Physical Chemistry*, 23rd Edn, Sultan Chand & Sons, New Delhi, 2011.
- 2. Gurudeep Raj, Advanced physical chemistry
- 3. F Daniel and R A Albert, *Physical chemistry*
- 4. N.M. Kapoor, *Physical Chemistry*.
- 5. J. B. Yadav Advanced Practical Physical Chemistry, Krishna Prakashan Media (P) Ltd

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CØ-1	Understand and apply the principles of chemical equilibrium, acid-base theories, and buffer systems to predict and interpret the behavior of chemical systems under varying conditions of pressure, temperature, and composition.	An	PSO-1,2,3
CO-2	Understand and apply the principles of electrochemistry to analyze conductance and electrode processes; perform and interpret conductometric and potentiometric titrations; explain the working of reference electrodes, concentration cells, and fuel cells; and utilize the Nernst equation to	An	PSO-1,2,3

University of Kerala 10