

University of Kerala

Discipline	CHEMISTRY						
Course Code	UK3DSCCHE205						
Course Title	BIOMOLECULE	ES AND BIO	PHYSICAL	L CHEMIST	RY-II		
Type of Course	DSC						
Semester	3						
Academic Level	200 – 299			_	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	3 hours	-	2 hours	5		
Pre-requisites	1. Higher seconda	ary level scie	nce knowled	ge			
	2. First & second	semester DS	Cs (chemistr	y) offered by	UoK		
	(preferable)						
Course Summary	This course include	des topics of	enzymes, li	pids, kinetics	of reactions,		
	metabolism of compounds and bioenergetics. Students can learn about						
	enzymes, classification of enzymes, importance of enzymes and their						
	role in life. This course also discusses the chemistry of lipids and						
	kinetics of reaction	kinetics of reactions. Students learnt about metabolism of various					
	compounds, and fu	undamentals	of bioenerge	tics.			

Detailed Syllabus:

Module	Unit	Content	Hrs					
		BIOMOLECULES AND BIOPHYSICAL CHEMISTRY-II						
1	1 INTRODUCTION TO ENZYMES & LIPIDS							
	1	Enzymes – Chemical nature and Features of active site.	3					
		Enzyme Specificity – Stereo, reaction, substrate and broad specificity.						
		Enzyme Commission system of classification and nomenclature of						
		enzymes: six major classes of enzymes with one example each.						
	2	Coenzymes and their functions - NAD, NADP+, FAD, FMN, lipoic	3					
		acid, pyridoxal phosphate, biotin and cyanocobalamin. Ribozymes,						
		Measurement and expression of enzyme activity, Definition of IU,						
40		katals, enzyme turnover number.						
	3	Isoenzymes- Lactate dehydrogenase	3					
		Applications of enzymes – Enzymes as therapeutic agents, as analytical						
		reagents, immobilized enzymes						
	4	Lipids: Definition, basic ideas about the biochemical functions of	2					
		lipids.						
		Classification of lipids with examples, classification of fatty acids,						
		physical and chemical properties of fatty acids.						

	1		
	5	Structure of the following fatty acids- stearic acid, oleic acid, linoleic	2
		acid, arachidonic acid. Structure of triacylglycerol.	
	6	Saponification number, acid number and iodine number of fats.	2
		Essential and non-essential fatty acids with examples	
	7	Compound lipids: membrane lipids- Structure and functions of	2
		phospholipids- phosphatidic acid, lecithin, cephalin, and phosphatidyl	
		serine, Functions of Sphingolipids.	
	8	Steroids: Strucutre and functions of cholesterol and ergosterol	<u>a</u>
II	CHE	MICAL KINETICS	9
	9	Rate of reactions, various factors influencing rate, order, molecularity,	3
		zero, first, second, third order reactions. Rate determining step.	
		Derivation of first order kinetics - fractional life time, units of rate	
		constants	
	10	Influence of temperature on reaction rates, Arrhenius equation,	2
		Calculation of Arrhenius parameters.	
	11	Factors affecting enzyme catalysed reactions - effect of substrate	4
		concentration, enzyme concentration, temperature, pH and activators.	
		Mechanism of Enzyme action - Activation energy, Interaction between	
		enzyme and substrate- lock and key model, induced fit model.	
		Enzyme kinetics - Km and its significance, Michaelis Menton equation	
		(without derivation), Lineweaver- Burk plot.	
		Significance of Km and Vm values.	
III	INTR	RODUCTION TO METABOLISM	9
	11	Metabolism- catabolism and anabolism	3
		Metabolism of carbohydrates – Glycolysis and citric acid cycle,	
		Electron transport chain and Oxidative phosphorylation.	
	12	Glycogenesis and glycogenolysis, Gluconeogenesis (Mention only).	1
	13	Metabolism of lipids - Metabolism of triglycerides, Outline study of β-	3
		oxidation of saturated and unsaturated fatty acids	
	14	Metabolism of amino acids – Proteolysis, Urea cycle.	2
IV	BIOE	ENERGETICS	9
	15	Basic concepts – System – surroundings – open, closed and isolated	3
		systems – Isothermal– isochoric and isobaric process.	
	16	Biochemical thermodynamics, first and second law of thermodynamics,	3
		Enthalpy, Entropy and Free energy. Criteria for reversible and	
		irreversible process - Gibbs free energy equation.	
	_17	Relationship between standard free energy change and equilibrium	3
40	· /	constant.	
1)		Standard free energy changes at pH 7.0 (ΔG '), additive nature of ΔG ',	
		ATP as universal currency of free energy in biological systems.	
		Photosynthesis – solar energy harvesting	
V	PRA	CTICAL- Physical chemistry experiments & Organic experiments	30
	18	Section A: Organic Quantitative Analysis: 4 Experiments from	15
		Section A are compulsory	
		1. Saponification number of fats	
		2. Acid number of fats	

	3. Iodine number of fats4. Separation of photosynthetic pigments by TLC5. Estimation of total chlorophyll, chlorophyll a and					
	chlorophyll b pigments from the leaves.					
19	Section B (Open ended: Any 3 experiments are to be conducted -	15				
	May be selected from the list or the teacher can add experiments)					
	1. Kinetics					
	a. Determination of rate constant of hydrolysis of methyl acetate					
	b. Determination of rate constant of saponification of ethyl acetate.					
	c. Kinetics of dye degradation using spectrophotometer					
	2. Preparation of acidic and basic buffer					
	3. Measurement of pH of buffers using pH meter					
	4. Heat of neutralisation of strong acid – strong base titration.					

References:

- 1. Dr. U. Satyanarayana, Dr. U. Chakrapani, Biochemistry, Books and Allied (P) Ltd
- 2. J. L. Jain, Sunjay Jain, Nitin Jain, Fundamentals of Biochemistry, S. Chand & Co. Ltd.
- 3. RK Murray, DK Granner, PA Mayers, VW Rodwell, *Harper's Biochemistry*, Prentiace-Hall International Editions.
- 4. Sharma, Madan and Pahania, Principles of Physical Chemistry, Vishal Publishing Co.
- 5. J.D. Lee, Concise Inorganic Chemistry.
- 6. Puri, Sharma and Kalia, "Inorganic Chemistry".
- 7. Arthur I. Vogel, B. S. Furniss, *Vogel's Textbook of practical organic chemistry*, 5th ed., Longman Scientific & Technical, London, 1996.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Discuss the classification of enzymes and their biological importance	U	PSO-1,2,3
CO-2	Explain the classification of lipids, their structure and biological importance	U	PSO-1,2,3
CO3	Explain the basic concepts of kinetics of chemical reactions	U	PSO-1,2,3
CO 4	Outline the metabolism of carbohydrates, fatty acids and proteins	U	PSO-1,2,3

CO 5	Explain the basic concepts of thermodynamics and relevance of themodynamics in biological processes.	U	PSO-1,2,3
CO 6	proficiency in conducting and analyzing quantitative experiments, thereby enhancing practical skills	U, Ap	PSO- 1,2,3,4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: BIOMOLECULES AND BIOPHYSICAL CHEMISTRY-II

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/ PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
1	CO-1	PO-1,6 PSO-1,2,3	U	F, C	L	-
2	CO-2	PO-1,6 PSO-1,2,3	U	F, C	L	-
3	CO3	PO-1,6 PSO-1,2,3	U	F, C	L	-
4	CO 4	PO-1,6 PSO-1,2,3	U	F, C	L	-
5	CO 5	PO-1,6 PSO-1,2,3	U	F, C	-	P
6	CO 6	PO-1,2,6 PSO-1,2,3,4				

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs:

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO 1	3	3	2	-	-	1	-	-	-	-	2	-	-
CO 2	3	3	2	-	-	1	-	-	-	-	2	-	-
CO 3	3	3	2	1	1	1	-	-	-	1	2	-	-
CO 4	3	3	2	-	-	1	-	-	-	-	2	-	1
CO 5	3	3	2	-	-	1	-	-	-	-	2	-	-
CO 6	1	3	2	2	-	1	2	-	-	-	2	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		✓
CO 2	✓	✓		✓
CO 3	✓	√	1	✓
CO 4	✓	√	R-Y	✓
CO 5	√	√		√
CO 6	√		/	√