

University of Kerala

Discipline	Mathematics								
Course Code	UK3DS	UK3DSCMAT207							
Course Title	Applica	Applications of Integration, Special Functions and Fourier Series							
Type of Course	DSC	DSC							
Semester	III	III							
Academic Level	200-29	200-299							
Course Details	Credit	Total							
		per week	per week		Hours per week				
	4	4	-	-	4				
Pre-requisites	1. Integration 2. Differentiation								
Course Summary	This course provides applications of integration, beta and gamma functions and Fourier series								

Detailed Syllabus

Module	Unit	Contents	Hrs				
Ι		Application of Integration					
	1	Area Between Two Curves, Volumes by Slicing; Disks and					
		Washers (Chapter 5: Sections 5.1, 5.2 of Text [1])					
	2	Volumes by Cylindrical Shells (Chapter 5: Section 5.3 of					
		Text 1)					
	3	Length of a Plane Curve, Area of revolution (Chapter 5:					
		Sections 5.4, 5.5 of Text [1])					
II		Work, Moments and Centroids	12				
	4	Work (Chapter 5: Section 5.6 of Text [1])					
	5	Moments, Centers of Gravity, and Centroids (Chapter 5:					
		Section 5.7 of Text [1])					
III		The Beta and Gammma Functions	10				
	6	The Factorial Function, Definition of the Gamma Function;					
		Recursion Relation (Chapter 11: Sections 11.1, 11.2, 11.3 of					
		<i>Text</i> [3])					

Module	Unit	Contents						
	7	The Gamma Function of Negative Numbers, Formulas						
		Involving Gamma Functions (Chapter 11: Sections 11.4,						
		11.5 of Text [3])						
	8	Beta Functions, Beta Functions in Terms of Gamma						
		Functions (Chapter 11: Sections 11.6, 11.7 of Text [3])						
IV		Fourier Series	20					
	9	Basic Examples, Euler Formulas (proof is not required),						
		Convergence and Sum of a Fourier Series, (Chapter 11:						
		Section 11.1 of Text [2])						
	10	Arbitrary Period, Even and Odd Functions, Half-Range						
		Expansions: From Period 2π to any Period $p = 2l$						
		Simplifications: Even and Odd Functions, Half Range						
		Expansions(Chapter 11: Section 11.2 of Text [2])						

Textbooks

- 1. H Anton, I Bivens, S Davis, *Calculus*, 10th Edition, John Wiley & Sons, 2012.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley Publishers, 2018.
- 3. Mary L Boas, *Mathematical Methods in Physical Science*, 3rd Edition, 2006.

References

- 1. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 2. Peter V. O. Neil, Advanced Engineering Mathematics, Thompson Publications, 2007.
- 3. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2008
- 4. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

E-resourses

1. https://www.geogebra.org/m/AzVR5uU7

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Demonstrate various applications of integration	PSO 1, PO1, 6	U	F, C	L	
CO 2	Compute tangent lines to polar curves, arc length and area	PSO 2, 4, PO 6	Ap, An	Р	L	
CO 3	Understand the concepts of factorial function, gamma function beta function and Fourier series	PSO 1, PO1, 6	U	F, C	L	
CO 4	Able to find Fourier series of different functions	PSO 3, 4, PO1, 2, 6	Ap, An	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	-	-	-	-	1	-	-	-	-	2	-	-
CO2	-	2	-	3	-	-	-	-	-	-	-	2	-	-
CO3	3	-	-	-	-	-	2	-	-	-	-	1	-	-
CO4	-	-	3	3	-	-	2	1	-	-	-	2	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

• Quiz/Assignment/Discussion/Seminar

- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark