

University of Kerala

Discipline	Mathematics									
Course Code	UK3DSCMAT204									
Course Title	Applications of Integration and Vector Calculus									
Type of Course	DSC	DSC								
Semester	III									
Academic Level	200-299									
Course Details	Credit	Credit Lecture Tutorial Practical Total								
		per week	per week		Hours per week					
	4	4 4 - 1 5								
Pre-requisites	1. Integration 2. Differentiation 3. Vectors									
Course Summary	This course enable the students to get an idea about the applications									
	of integration and vector calculus.									

Detailed Syllabus

Module	Unit	Contents						
Ι	Application of Integration							
	1Area Between Two Curves, Volumes by Slicing; Disks and Washers (Chapter 5: Sections 5.1, 5.2 of Text[1])							
	2 Volumes by Cylindrical Shells (<i>Chapter 5: Section 5.3 of</i> <i>Text[1]</i>)							
	3	Length of a Plane Curve, Area of revolution (<i>Chapter 5:</i> Sections 5.4, 5.5 of Text[1])						
II		Work, Moments and Centroids	12					
	4	Work (Chapter 5: Section 5.6 of Text[1])						
	5	Moments, Centers of Gravity, and Centroids (<i>Chapter 5</i> Section 5.7 of Text[1])						

Module	Unit	Contents	Hrs				
III		Vector Differentiation					
	6	Vector fields (Definition), inverse square fields, Gradient fields, Conservative Fields and potential functions, Divergence and Curl, the ∇ operator (<i>Chapter 15: Section 15.1 of Text[1]</i>)					
IV		Vector Integration	18				
	7	Line integrals, Integrating a vector field along a curve - Exercise Set 15.2- problems 15-30, 33-36, 41-46. (<i>Chapter</i> 15 Section 15.2 of Text[1])					
	8	Independence of Path; Conservative Vector Fields, Green's Theorem(<i>Chapter 15: Sections 15.3, 15.4 of Text</i> [1])					
	9	Surface integrals evaluating surface integrals, Flux, evaluation of flux integrals, The divergence theorem (without proof) using the divergence theorem to find flux. Stoke's the (all without proof) Relationships between Green's theorem and Stoke's theorem (<i>Chapter 15: Sections</i> 15.5 to 15.8 of Text[1])					
Practical	Practical sessions can be given using suitable software like sagemath (not meant for examination purpose)						

Textbook

1. H Anton, I Bivens, S Davis, *Calculus*, 10th Edition, John Wiley & Sons, 2012.

References

- 1. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 2. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2008.
- 3. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

E-resourses

- 1. https://www.sagemath.org/help.html
- 2. https://www.geogebra.org/m/AzVR5uU7
- 3. https://www.geogebra.org/m/yyu2my9w
- 4. https://www.geogebra.org/m/zQzssykZ
- 5. https://www.geogebra.org/m/Bx8nFMNc

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Demonstrate various applications of integration	PSO 1, PO1, 6	U	F, C	L	
CO 2	Compute tangent lines to polar curves, arc length and area	PSO 2, 4, PO6	Ap, An	Р	L	
CO 3	Describe the concepts Vector fields, Gradient fields, potential functions and vector integrals	PSO1, PO1, 6	U	F, C	L	
CO 4	Apply vector integrals to find areas	PSO 3, 4, PO1, 6	Ap, An	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	-	-	-	-	1	-	-	-	-	2	-	-
CO2	-	2	-	3	-	-	-	-	-	-	-	2	-	-
CO3	3	-	-	-	-	-	2	-	-	-	-	2	-	-
CO4	-	-	3	3	-	-	2	-	-	-	-	2	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam

- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark