

University of Kerala

Discipline	CHEMISTRY				
Course Code	UK3DSECHE206	6			(5)
Course Title	CHEMISTRY O	F NANOMA	TERIALS .	·I	
Type of Course	DSE				
Semester	3			_	
Academic Level	200-299				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	4	4 hours		\ \!\	4
Pre-requisites	Higher secondary	Chemistry			
Course Summary	This course covers	the fundam	ental princip	les of materia	ls science and
	engineering, inclu	ding atomic	structure, c	rystallography	y, mechanical
	properties, electri				_
	properties. It also				techniques of
	materials and it's v	ide applicati	ons in variou	ıs fields.	

Detailed Syllabus:

Module	Unit	Course Description	Hrs
		CHEMISTRY OF NANOMATERIALS -I	60
I	INTR	ODUCTION TO MATERIALS SCIENCE	9
	1.1	Definition and scope of materials chemistry	3
	1.2	Historical Perspective	1
	1.3	Classification of Materials- Metals and alloys, Polymers, Ceramics and glasses,	3
		Composites, Advanced Materials- Semiconductors, Biomaterials, Smart	
		materials, Nanomaterials	
	1.4	Importance of materials chemistry in technology and industry	2
II	ATO	MIC AND MOLECULAR STRUCTURE OF MATERIALS	9
	2.1	Introduction, Atomic Structure-Fundamental Concepts	1
	2.2	Bonding Forces and Energies- Primary Interatomic Bonds- Ionic, covalent,	2
A (metallic bonding; Secondary bonding or Vander Waal's forces	
	2.3	Structure of Crystalline Solids- Fundamental concepts Bravais lattices, unit cell,	3
		Crystal systems, Crystallographic Points, directions, and Planes	
		Closed Packed Crystal structures- BCC, FCC, HCP	
	2.4	Defects in Crystals: Imperfections and their impact on properties.	3
III	PHYS	SICAL PROPERTIES OF MATERIALS	9
	3.1	Mechanical properties- Stress, strain, and elastic deformation, Tensile testing -	2
		Plastic deformation	

	3.2	Thermal properties - Heat capacity and thermal conductivity; Thermal expansion	2
		and its measurement	
	3.3	Optical properties - Reflection, refraction, and dispersion, Absorption and	2
		transmission of light	
	3.4	Electrical & Magnetic Properties- Conductivity, resistivity	3
		Dielectric materials and polarization	
		Magnetic materials -Ferromagnetism, paramagnetism, and diamagnetism	
IV	SYN	THESIS, PROCESSING AND APPLICATIONS OF MATERIALS	18
	4.1	Solid-state reactions	2
		Powder preparation methods (milling, comminution)	
		Sintering and densification techniques	
	4.2	Gas-Phase Reactions	3
		Chemical vapor deposition (CVD), Physical vapour deposition (PVD)	
		Plasma-enhanced CVD	
		Physical vapor deposition (PVD) techniques (sputtering, evaporation)	
	4.3	Liquid phase reactions	2
		Sol-gel processing, Hydrothermal, solvothermal	
		Chemical vapor deposition (CVD)	
		Electroplating and electroless deposition	
		Spin coating and dip coating	
	4.4	Emerging Processing Techniques	2
		Additive manufacturing (3D printing)	
		Self-assembly and biomimetic synthesis	
	4.5	Electronic and Optoelectronic Applications	2
		Applications in microelectronics, photonics, and telecommunications	
	4.6	Materials for Energy storage and Conversion:	3
		Energy Storage Materials: Batteries, supercapacitors, and fuel cells	
		Energy Conversion Materials: Solar cells, thermoelectric materials, and	
		hydrogen storage materials	
	4.7	Biomaterials and Medical Applications	2
		Implants, prosthetics, medical devices, drug delivery systems, tissue engineering	
		and regenerative medicine	
	4.8	Environmental and Sustainable Applications	2
		Recycling, green materials, and sustainable manufacturing	
		Materials for pollution control, water treatment	
V	OPE	N ENDED MODULE: Learning through problem solving, seminars, open	12
	discu	ssions, assignment discussions, Quizzes, Open book exams etc	
4		1.Defention and scope of material chemistry	
		2. Importance of materials chemistry in technology and industry	
		3. Bravais lattices, unit cell, Crystal systems	
		4.Closed Packed Crystal structures- BCC, FCC, HCP	
		5.Mechanical, thermal, optical, electric and magnetic properties of materials	
		6. Emerging Processing Techniques of materials	
		7. Materials for Energy storage and Conversion	
		8. Applications of materials in various fields	

References

- 1. W.D Callister. Jr, Materials Science and Engineering, Wiley India Pvt. Ltd, 2007
- 2. Raghavan V, Materials Science and Engineering, 4th Edition, Prentice Hall of India, 1998
- 3. Joel I. Gersten and Frederick W. Smit, "The Physics and Chemistry of Materials", Wiley, 2007
- 4. Fahlman, B.D., Materials Chemistry, Springer, 2007
- 5. James F. Shackelford, Introduction to Materials Science for Engineers, 8th Edition, 2020
- 6. William F. Smith and Javad Hashemi, *Foundations of Materials Science and Engineering*; 6th Edition, Mc Graw Hill, 2022

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Students will get to know the different classes of materials and its importance in technology and industry	U	1,3
CO-2	Understand the interatomic bonding in solids and the type of bond allows them to explain a material's properties	R, U	1,2
CO-3	Describe the difference in atomic/molecular structure between crystalline and noncrystalline materials.	U	1,2,3
CO-4	Describe how face-centered cubic and hexagonal close- packed crystal structures may be generated by the stacking of close-packed planes of atoms. Identify the imperfections in crystals	Ap	1,3
CO-5	Define and differentiate between various physical properties of materials, including mechanical, thermal, optical, and magnetic properties.	U	1,2,3
CO-6	Describe the fundamental principles and various techniques involved in the synthesis of materials, encompassing metals, ceramics, polymers, and composites.	U	1,2,3,5
CO-7	Relate the material properties (mechanical, thermal, optical, electrical, etc.) to their suitability for specific applications.	U	1,3,5

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: CHEMISTRY OF NANOMATERIALS -I

Credits: 4:0:0 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
1	CO-1	1,3	U	F, C	L	
2	CO-2	1,2	R, U	С	Т	
3	CO-3	1,2,3	U	С	L	
4	CO-4	1,3	Ap	F, C	L	8
5	CO-5	1,2,3	U	M	Т	
6	CO-6	1,2,3,5	U	С	L	<i>></i>
7	CO-7	1,3,5	U	M	, LD	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs:

	PSO	PSO	PSO	PSO4	PS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
	1	2	3		O5		4						
CO 1	2	-	3	-	-	2	-1	-	-	-	-	-	-
CO 2	3	3	-	-	-	3 >	2	-	-	-	-	-	-
CO 3	2	1	3	-	-	3	2	-	-	-	-	-	-
CO 4	3	-	2	- /	7	2	2	-	-	-	-	-	-
CO 5	3	3	2	4	-	3	3	-	-	-	-	_	-
CO 6	3	2	3	(-)	3	3	3	-	-	-	-	-	-
CO7	2	-	3	-	2	3	2	-	-	-	-	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments

Final Exam

Mapping of COs to Assessment Rubrics:

CO 1		Assignment	Project Evaluation	
CO 2	✓			√
-	✓			✓
CO 3	✓			✓
CO 4	✓	✓	✓	✓
CO 5	✓	✓		√
CO 6	✓		✓	
CO 7	✓		✓	
	AGP.		SIR	