

University of Kerala

Discipline	PHYSICS						
Course Code	UK3DSCPHY204						
Course Title	LIGHT, ELECTRICITY AND EMERGING ENERGY SOURCES						
Type of Course	DSC						
Semester	ш			. 0.			
Academic Level	200 - 299		•	\mathcal{N}			
	Credit	Lecture per	Tutorial per	Practical per	Total		
Course Details	Crean	week	week	week	Hours/Week		
	4	3 Hrs	37	2 Hrs	5 Hrs		
	1. Light and its properties: frequency, wavelength, intensity						
Pre-requisites	2. Basics of current electricity – Potential difference, electric current, Ohm's law,						
	dc & ac						
				al energy, semicor			
	Introduce different types of basic sources and detectors of light and their working						
	principle. Give a detailed idea of the working of LASER. Give introductory						
	knowledge about optical instruments such as laser diodes, camera, telescope and						
	compound microscope. The course also aims the understanding of the generation of						
	de and ac. In a comprehensive level, the trouble shooting in electric circuits is						
Course Summary	introduced. As an energy source of the future, solar energy and its successful use in various fields such as cooking, heating, cooling, distillation, pumping etc are						
	introduced. The impact of solar energy and solar cells on the future of humankind is analysed. Different thermo-electric effects and their applications are discussed.						
	-			g principle, class			
	discussed.		SUCH AS WORKIN	g principie, class			
	uiscusseu.						

BOOKS FOR STUDY:

- Light_ Introduction to Optics and Photonics, Judith Donnelly & Nicholas Massa, Photonics Media Press (2018) Second Edition
- DC/AC Electrical Fundamentals, Dale R. Patrick, Stephen W. Fardo, Ray E. Richardson & Vigyan (Vigs) Chandra, River Publishers
- 3. Non-Conventional Energy Sources and Utilisation, R.K. Rajput, S. Chand & CO

BOOKS FOR REFERENCE:

- 1. A Text Book of Optics, Brijlal & N Subramanyam, S Chand & CO
- Physics for Scientists and Engineers with Modern Physics (extended version) 2008, Paul A. Tipler & Gene Mosca, W. H. Freeman and Company
- 3. Non-Conventional Energy Resources, B H Khan, Mc Graw Hill India, 2016

Module	Unit	Content	Hrs	CO No
		Sources and detectors of light (Book 1: Chapter 2)	9	
I	1	Natural Light Sources, Incandescent Light Sources, Fluorescent lamps, High Intensity Discharge (HID) Lamps, Low-Pressure Sodium Lamps, Flash Lamps and Arc Lamps, Light Emitting Diodes (LEDs)	4	1
		Detectors- Thermal Detectors, Quantum Detectors, Photo-emissive Detectors, Photoconductive Detectors	3	1
	3	Photodiodes, Photodiode Parameters	2	1
	Optical Instruments & Lasers (Book 1: Chapter 8, 9 & 10)		9	
	4	Simple Magnifier, The SLR Camera	2	2
п	5	Optical Telescopes, The Compound Microscope	2	2
	6	Laser - Emission and absorption of photons	1	3
	7	Basic laser components, energy transitions in laser action	2	3
	8	Semiconductor lasers (laser diodes)- Homo Junction, Hetero Junction Laser, Distributed Feedback Lasers	2	2,3

DETAILED SYLLABUS: THEORY

		Sources of DC & AC Electrical Energy	9	
	(Book 2: Chapter 8 & 10)			
	9	Chemical Sources – Primary and Secondary Cells	2	4
	10	Battery Connections – Series, Parallel, Combination	1	4
III	11	Light Sources, Heat Sources, Pressure Sources, Electro-Magnetic Sources	2	4
	12	AC Generator Basics	1	4
	13	Single Phase and Three Phase AC generators, Analysis and Trouble shooting	3	4
		Solar Energy Applications	9	
		(Book 3: Chapter 4)	9	
	14	Solar water heating, space heating, space cooling	2	5
IV	15	Solar distillation, solar pumping, solar air heaters and drying	2	5
	16	Solar cooking, solar furnace	2	5
	17	Solar green-houses and global warming, solar power plants	2	5
	18	Solar Photo Voltaic Cells (qualitative idea only)	1	5
		Emerging Technologies (Book 3: Chapter 9)	9	
	19	Thermoelectric effect – Seebeck effect, Peltier effect, Thomson effect, Joule effect	1	5
V*	20	Thermoelectric generator – Construction and working, Thermoelectric materials and their selection, Advantages and disadvantages of thermoelectric power generator	2	5
	21	Thermionic generator/converter – Introduction, Thermionic generator, Desirable of Properties of Thermionic Converter Materials, Advantages, disadvantages/limitations and applications of thermionic converter	2	5
	22	Fuel cell: Advantages, disadvantages and applications of	1	5

	fuel cells		
	Components and working theory of a fuel cell,		
23	Classification fuel cells, Requirements of electrolyte and	2	5
	electrode, Desirable characteristics of a fuel cell		
24	Hydrogen-oxygen fuel cell (hydroxy cell)	1	5

DETAILED SYLLABUS: PRACTICALS

Part A – At least 5 Experiments to be performed				
SI No	Name of Experiment	CO No		
1	Experiment to determine the Wavelength of Sodium Light Using a			
	Diffraction Grating/prism and Spectrometer	6		
	Determine and plot the characteristics of the light emitting diode in the			
2	forward-bias region, and to compare between different coloured diodes.			
3	To study the VI Characteristics of Photodiode	6		
Δ	Study the operating characteristics for a diode laser, including threshold			
4	current, output power versus current, and slope efficiency			
5	Study diffraction by single slit	6		
6	Study diffraction by double slit	6		
7	Determine the voltage and current by connecting 3 dry cells (a) Series (b)			
,	Parallel	6		
8	Study the Characteristics of Thermistor	6		
9	Study the Characteristics of Solar cell	6		
10	To verify the relationship between the voltage, the electric field and the	6		
10	spacing of a parallel plate capacitor.	6		
11	To verify superposition theorem/Thevenin's theorem/Norton's theorem/	6		
11	Maximum power transfer theorem in a circuit	0		
12	Set up simple circuits with resistors, capacitors, and/or inductors and use a			
	Multimeter to measure voltages, currents, and resistances at different points	6		
	in the circuit.			
	Part B* – At least One Experiment to be performed			

11	To Calibrate the given thermistor with standard thermistor, hence to find the temperature of the unknown liquid.	6
12	Demonstration of Seebeck Effect and determination of Seebeck Coefficient and Figure of Merit	6
13	To verify Ohm's law in a resistive circuit	6
14	To demonstrate Kirchhoff's laws in a circuit	6

COURSE OUTCOMES

СО	Upon completion of the course the graduate will be	Cognitive	PSO
No.	able to	Level	addressed
CO-1	Explaining different types of sources of light and light detectors	Ар	PSO-1,5
CO-2	Analyze the working principle of basic optical instruments such as camera, telescope and microscope.	An	PSO-1,5
СО-3	Accessing the working principle of LASER and laser action in semiconductor diodes	E	PSO-1,2
CO-4	Formulating dc & ac electric circuits and practice troubleshooting of electric circuits.	С	PSO-1,5
CO-5	Illustrating the usage, storage and importance of solar energy, Thermo-electric energy, thermionic energy, fuel cells	An	PSO-1,3
CO-6	Demonstrating simple experiments	Ар	PSO-1,6,7

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: LIGHT, ELECTRICITY AND EMERGING IENERGY SOURCES Credits: 3:0:1 (Lecture: Tutorial: Practical)

CO No.	СО	PO / PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
CO-1	Explaining different types of sources of light and light detectors	PO1,2,3,4, 6,7 / PSO-1,5	Ар	F, C	L	-
CO-2	Analyze the working principle of basic optical instruments such as camera, telescope and microscope.	PO1,2,3,4, 6,7/ PSO-1,5	An	F, C		-
CO-3	Accessing the working principle of LASER and laser action in semiconductor diodes	PO1,3,4,6, 8/ PSO-1,2	E	F, C	L	-
CO-4	Formulating dc & ac electric circuits and practice troubleshooting of electric circuits.	PO1,2,3,4, 6,7/ PSO-1,5	С	F, C, P	L	-
CO-5	Illustrating the usage, storage and importance of solar energy, Thermo-electric energy, thermionic energy, fuel cells	PO1,2,3,4, 6/ PSO-1,3	An	F, C	L	-
CO-6	Demonstrating simple experiments	PO1,2,3,4, 6,7,8/PSO- 1,6,7	Ар	F, C	-	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive