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INTRODUCTION

Historically, Fourier (1768-1830) is the intiator of the theory of integral equa-
tions. Du Bois Reymond first suggest the term integral equation in 1888 Pio-
neering systematic areas research goes back to the work of Volterra, Fredholm
and Hilbert in the late 19th and early 20th centuries. Various physical prob-
lems in physics and other applied fields culminate into intial value problems
or boundary value problems. Although it is equivalent to frame the problem
in the form of (ordinary and partial) differential equation or in the form of
integral equations, but it is prefered to choose the integral form due to two
main reasons. Firstly the solution of integral equation is much easier than
the original boundary values or the intial value problems. The second rea-
son lies in the fact that integral equations are better suited to approximate
methods than differential equations. Moreover, integral equations develop as

representation formulae for the solution of differential equations.



CHAPTER 1

PRELIMINARIES

1.1 Definition

An integral equation is an equation in which the unknown function u(z) to
be determined appears under the integral sign. A typical form of an integral

equation is:

B(z)
u(z) = f(x) +/( ) k(x, t)u(t)dt

where k(z,t) is the kernel of the integral equation, a(x) and B(z) are the

limits of integration.

1.1.1 Definition

A linear integral equation is an equation involving an unknown function y(x)
which appears under an integral sign and is linear in y(x) and its derivatives.

It typically takes the form:

b
/ K (. tyy(t)dt = f(z)



where K(x,t) and f(x) are known functions and the goal is to find the
unknown function y(x). An example of a linear integral equation is the

Fredholm integral equation of the second kind:

/0 K (. tyy(t)dt = f(z)

where K (z,t) and f(x) are given functions.
A nonlinear integral equation is an equation where an unknown function
appears under an integral sign, and the equation itself involves nonlinear

operations on that function.

1.2 Classification of Linear Integral Equations

The two main classes are namely Fredholm and Volterra integral equations

and the 4 related types:

e Fredholm Integral equation

Volterra integral equation

Integro-differential equation

Singular integral equation

Volterra-Fredholm integral equation

Volterra -Fredholm integral-differential equation



1.2.1 Fredholm Linear Integral Equation

The standard form of Fredholm linear integral equation, where the limits of

integration a and b, are constants are given by:
o(z)u(x) = f(z) + )\fab k(x,tyu(t)dt a <x,t <b (1) Where X is a pa-

rameter and k(z,t) is the kernel.

e When ¢(z) = 0, equation (1) becomes 0 = f(x)+A fab E(x,t)u(t)dt (2)
e When ¢(x) = 1,equation(1) becomes u(z) = f(x)+A f; k(z,t)u(t)dt (3)

where equation (2) is called the Fredholm integral equation of the first kind,

equation(3) is called the Fredholm integral equation of the second kind.
1.2.2 Volterra Linear Integral Equation

The standard form of Volterra Linear integral equation, where the limits of

integration are functions rather than constants:
oayule) = Fla) 4 [ kat) uydr (@
When ¢(z) = 0, equation (4) becomes:

f(x) +)\/$ k(x,t)-u(t)dt =0 (5)



This integral equation is called Volterra integral equation of the first kind.

When ¢(z) = 1, equation (4) yields:

u(z) = f(x) + )\/I k(x,t)-u(t)dt

This integral equation is called Volterra integral equation of the second kind.
Note: If f(z) = 0, then the resulting integral equation is called a homoge-
neous integral equation; otherwise, it is called a non-homogeneous integral

equation

Question 1: Classify the integral equation

u(m)z%jtx—/o (x—1)-u?(t)dt

as Fredholm or Volterra integral equation, homogeneous or non-homogeneous.

Solution:

e It is non-homogeneous since f(z) =1 +z #0.

e The limits of integration are constant.

e The function u(z) appears twice.

e The unknown function appears under the integral sign.



Question 2: Classify the following equation

u(z)=1- 2x2+/tf(t) dt, u(0)=0

as Fredholm or Volterra integro-differential equation and homogenous or non

homogenous.

Solution:
e The equation includes both differential and integral operators.
e The upper limit of the integral is a variable.

Thus, it is a Volterra integro-differential equation.

1.3 Solution of an Integral Equation

A solution of an integral equation on the interval of integration is a function
u(x) such that it satisfies the given equation. That is, if the given solution is
substituted on the right-hand side of the equation, the output of this direct
substitution must yield the left-hand side.



Question 1: Show that u(x) = e” is a solution of the equation

u(z) = 1+/0xu(t) dt

Solution:

Put u(z) = e*
RHS =1 +/ et dt
0
Sl
=1+ (e —¢€")

=1+4+e" -1

Question:2 Show that u(z) = x is a solution of the following Fredholm

integral equation:



Solution:

Put u(z) ==

5 1 1/t

HS= -2 — -+ - t)t dt

RHS &7 9+3/0(x+)
5 1 1/t
=-zr—>+= t+t%) dt
5% 9—|—3/0(:c—|—)
5 1 11 1
= r——+ | Z(x-[1- (1 =
Gty gl -0+ 51 -0
6 9 3\2 3
e 1 a1
6 9 6 9
_5m+x
6 6
_ 6
6
=z
= u(x)

1.3.1 Leibnitz Rule

The Leibniz rule for differentiation under the integral sign is given by:

B(x) B(x) x oz
4 [/ F(x,t)dt] :/ OF o)+ P, B P22 _ p(o, a(a)) 222

@ O dz dz



1.3.2 Lemma

If n is a positive integer, then:

/j /jl . ../jn_l f(zy)dx, dey_q ... dey = n _1 0] /;(x — )" f(t) dt




CHAPTER-2

FREDHOLM INTEGRAL EQUATIONS

2.1 Converting BVP to Fredholm Equation

Consider the following boundary value problem:
y'(@) + gla)y(x) =h(z), 0<z<l (2)

with boundary conditions:

Sety”(x) = u(r)  (4)
and integrate(4) both sides from 0 to z:

/Ow y"(t)dt = /Ox u(t)dt (5)

that gives

where the intial condition y'(0) is not given , so it will be determined later

using the boundary condition at z = 1 . Integrating on the both sides from

10



Otox

imlpies

y(x) = y(0) + zy'( / /

or equivalently:

y(z) = a+2y'(0) + /Ox(m — t)u(t)dt (8)

To determine y'(0), we substitute x = 1 into both sides of (8) and using the
boundary condition at y(1) = 8, we find:

y(1) = o+ 5/(0) + / (-t (9)

which gives:

f=a+1y'(0) +/O (1 —t)u(t)dt (10)

Rearranging gives:

Substituting (11) in (8):

yz)=a+ (8 —a)r — /O (1 —t)u(t)dt + /Oz(x — t)u(t)dt (12)

Substituting (12) and (4) in equation (2) yields

u()+ag(z)+(f—a)zg(z)— / £g(x)(1—tyu(t)di+ / " (@) (a—tyult)dt = hx)

11

(13)



From (13) we get:

u(r) = h(z) — ag(z) = (6 — a)zg(z) = g() /j(ﬂf — tu(t)dt

+ 2g(x) K/Ox(1—t)+/;(1—t)> u(t)dt} (14)

which gives:

T 1

u(z) = f(x) +/ t(1 —z)g(x)u(t)dt +/ z(l —t)g(x)u(t)dt (15)
0 T
that leads to the Fredholm integral equation:
1
u(z) = f(x) +/ K(x,t)u(t)dt (16)
0

where:

f(x) = W) —ag(z) — (B —a)zg(z)  (17)

The kernel K (z,t) is given by:

t(l—x)g(x),for 0<t<u
I LT

(1 —t)g(z),for z<t<ux

Question 1 : Derive an equivalent Fredholm integral equation to the fol-

lowing boundary value problem:

y'(x)+ylx)=2, O<z<m (18)

12



subject to the boundary conditions:

Solution
Let y"(z) = u(x) (20).
Integrating both sides of (20) from 0 to z:

/0 (bt = /O ()t

or equivalently:

(19)

(21)

J(2) = (0) + / Cutdt (22)

Note that 3/(0) can be determined later by using the boundary conditions

r =T

Integrating (22) yields:

y(z) =1+ 2y (0) + /:(:U —tu(t)dt  (23)

pute = 7 y(m) = 1+ xy/(0) + [ (7 — t)u(t)dt

and solving for ¢/(0), we obtain:

A=

y'(0) =

13

(24)

((w _9) /O " —t)u(t)dt) (25)



Substituting (24) for y’(0) into (23) yields:
T

yz) =1+ ((w 9y /Ow(x _ t)u(t)dt) + /Ox(g; _Hu(t)dt (26)

Substituting (26) and (25) these expressions into equation (18) gives:

X

w(z) = 2—1-L(n—2)-L /0 la—tyu(t)dt— /0 (—tut)di—2 /0 So—tudt  (27)

™ ™ s

u(g) = 22T /0 L — myut)dt — /W =7 tyar

™

where ,

Question 2: Convert the Fredholm integral equation
1
u(z) = )\/ K(x,t)u(t)dt
0

r(t—2)0<x <1,
K(z,t) = (1)
tl—x)t<zx<1

into the boundary value problem

W+ =0, u0)=0, u(l)=0

14



Solution:

We have

(@) = A U;m —:L*)u(t)dt—l—/;:v(l —t)u(t)dt] (1)

Differentiating with respect to x and using the Leibniz formula, we get

%u(l«) =)\ /Ox tu(t)dt + x(1 — x)u(z) + /x (1 = t)u(t)dt

—z(1 — z)u(x)

Z_Z =A {/Ox —tu(t)dt + /:(1 — t)u(t)dt}

Differentiating again

% = )\/0’”ox—tu(t)dt—f—/\(—x)u(x)—F/x Ox (1—t)u(t)dt—A(1=N)u(x)—Au(x) = —Au(x)
d*u
e + Au(z) =0

Therefore u” (x) + Au(x) =0
From (1), we have u(0) = 0 = u(1)

2.2 Solution of Fredholm Integral Equation

Consider a second kind Fredholm integral equation

b
u(z) = f(x) + )\/ K (x, t)u(t)dt (1)
15



We define an integral operator

There (1) can be written as
u(z) = f(x) + AKu(z)]
2.2.1 Theorem

The Fredholm integral equation

b
u(z) = f(x) + )\/ K (x,t)u(t)dt (1)
is such that
e K (x,t) is a non-zero real valued continuous function in the rectangle
R =1 x1, where I = [a,b] and |K(z,t)| < M in R.

e f(z) is a non-zero real valued and continuous function on I.

e ) is a constant satisfying the inequality |\ < m

16



Then (1) has a solution, and only one continuous function on the interval I,

and this is given by the absolutely and uniformly convergent series:

u(x) = f(x) + AK[f(x)] + X K[f(x)] + - -

2.3 Resolvent Kernel for Fredholm Integral Equa-

tion

Consider the Fredholm integral equation
b
uw(z) = f(x) + )\/ K(z,t)u(t)dt (1)
The iterated kernels are defined by
Kl(l‘7t) = K(l’,t)

b
Kn+1(ZL‘,t> :/ K(x7y>Kn(yat)dya n = 172a37 e

and the solution of (1) is given by

w(w) = f(z)+ A / Rz, #: \) f(t)dt

17



where
R(z,t; \) = Ky (x,t) + MKy (z,t) + N2 Ks(x,t) 4 -+ = Z N UK (2, 1)
n=1
2.3.1 Neumann Series

The infinite series

Ky + MKy + MN2K3+ - -

is called the Neumann Series.

2.3.2 Resolvent Kernel

The function R(z,t;\) is called the Resolvent Kernel.

Question 1: Obtain the resolvent kernel associated with the kernel
K(z,t) =1—3at
in the interval [0, 1] and solve the integral equation

u(z) =1+ )\/1(1 — 3zt)u(t)dt

Solution:

18



We have K(x,t) = 1 — 3xt. We know that the iterated kernels are given by
the relation:

Ki(z,t) = K(x,t)

zaﬂuxr—/faawKa%w@

Therefore,

Ki(z,t) =1— 3zt

1 1 1
Kz(:v,t)z/ K(as,y)Kl(y,t)dy=/ (1—3xy)(1—3ty)dy=/ (1—3ty—3zy+9zyt)dy
0 0 0

1 1
3t 3 9xt .
:/ (1 — 3ty — 3zy + Yzyt*)dy = y——yQ——xyz—i—iys
0 2 2 3 0
3t 3z
=1-=-==
5 5 + 3t

&@wlemwmmmw

! 3 3 1
Koz, t) = / (1= 3ey)(1 — Sy~ ot + 3yt)dy = 71— 3a)
0

2 2
! I 1 3t 3z
Kawt) = [ Koy Kyl Ody == [ (1=30y)(1-3yt)dy =+ [1- 2 - 304 500
; 4 ), 4 2 2
The Resolvent Kernel R(z,t; \) is given by
R(z,t;\) = Ky + MKy + N2 K5+ XKy + - -
1-3t 3z A2 A 3t 3z
= (1-3at A YA [ IR B Vo WA iy, 357 VR
( 3x)+)\( 5 2—|—3x)+4( 3x)+4{ 5 2+3x]+

A2 3t 3z A2
—(1— 142 12027 14
( 3{Et)( +4>+)\( 5 2+3$t)( +4)+

19



2

A t
R(z,t; \) = <1+Z+‘”) {(1—333t)-|—)\(1—3——3—x+3xt

2 2

1 t

4 3t 3z
= 1— 1— 2222
Yy {( 3:Ut)+)\( I —|—3$t>}

The solution of the integral equation is given by

b
u(z) = f(x) + )\/ Rz, t; \) f(t)dt

where K (z,t) = 1 — 3xzt, then

4
R(x,t;)\):4_)\2 [(1—3xt)+)\<1—%—37$+3xt)}

Thus, the solution of the given integral equation is

4 2 1
T Ry (o )
- 0 i

2 2

4\ 3z 3 3z 3
—1—|—4_>\2 {1—?—1—)\(1—4—1—7%—5)}

4
1 {1—3—x+5]

4 — \2 2 4
444X —6zA
4 )2

CNA2

20

71

40

)



2.4 The Adomian Decomposition Method

The method provides the solution in a series. In the decomposition method,

we express the solution u(x) of the integral equation
b
(@) = f(z)+ A/ K@ tu)da<z<b (1)
in the form defined by
u(@) =) ualr)  (2)
n=0
Substituting the decomposition into both sides, we get

o] b o]
D un(w) = fz)+ A / K(xz,t) <Zun(t)> a  (3)

or equivalently
up(z)+uy () +ug(z)+- - = fa)+A /bK(x,t)uo(t)dt—l—/\ /bK(x,t)ul(t)dt—l—/\ /bK(x,t)UQ(t)dt-

The components ug(x),us(x),us(x), -+ of the unknown function u(zx) are

completely determined in a recurrent manner if we set:

b
ui(x) = )\/ K (x,t)uo(t)dt (6)
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b
ug(x) = )\/ K(x, t)uy(t)dt (7)

and so on. (1) can be written in a recursive manner as:

Upy1(T) = /\/b K(z,t)u,(t)dt, n>0 (9)

With these components determined, the solution u(z) can be readily deter-

mined in a series form.

Questionl: Consider the Fredholm integral equation of the second kind

9 2 ' 1 242
w(x) = —z°+ [ x*t7u(t)dt
0

10 2
Solution:
f@) = 2>, X = 1 and K(z,t) = 12°t*. Next, we have to evaluate
uo(x), ur (), us(x), - -. The series solution is:
9 o
uo(x) = 0%
"1, "1 5,59 9 o
= —x°t t)dt = " —t*dt = —
(@) /0 v Euo(t) /0 2" " 10 100"
1 1 9 9
u2(x):/ —$2t2u1(t)dt—/ P tdt = ——a?
.2 . 27" 100 1000
w(x) = up(x) + ui(z) + ua( )+---=3x2+i$2+—$2+---
10 100 1000

22



The solution in a closed form is:

u(z) ==

Question 2: Consider the Fredholm integral equation

u(z) =e*—1+ /01 tu(t)dt

Solution:

up(x) = f(z) =€ —1

up(x) = /01 tug(t)dt = /01 t(e! — 1)dt = %

1 1 )
ug(z) = / tuq (t)dt = / §tdt =7
0 0

(z) =¢€" 1+1(1+1+1+ )
u\r) ==e€ B 9 1

The solution is in the closed form:

u(z) =e
2.5 The Method of Successive Substitutions

This method introduces the solution of the integral equation in a series form

through evaluating single integral and multiple integrals as well. w In this

23



method, we set z =t and ¢ = ¢; in the Fredholm integral equation
b
u(z) = f(x) + )\/ K(z,t)ut)dt, a<x<b

to obtain

ult) = F(t) + A / bK(t,tl)u(tl)dtl

Replacing u(t) in the right-hand side , we obtain

u(z) = f(z) + )\/b K(z,t)f(t)dt + \? /b K(x,t) /b K (t, ty)u(ty)dtdt

Question 1: Consider the Fredholm integral equation

u(z) =x+ A /01 wtu(t)dt

Solution

The zeroth approximation may be selected by
up(z) =0
substituting this in the right-hand side

w(z) ==

24



follows immediately. Proceeding in the same manner, we find that
1
us(x) == + )\/ rtdt
0

so that

ug(z) =2+ -

In a similar manner, we obtain

1
U3($):SB—|-)\/ xt(l+§t>dt
0

/\2
ug(z) = x + 3% + 97

which yields

Generally, we obtain for the nth approximation

_ by )\2 )\n—l -
un(x)—x+§x+§x+-~-+%x, n>1

Consequently, the solution u(x) is given by

. . A A2 1
u(x)z#ggoun(a:)—nh_{go <£B+§x+§ﬂf+"') =T % 0<A<3
Using the new selection of ug(z) in the right-hand side the first approximation

A
u(z) = x + 3%
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is readily obtained. Proceeding as before, we thus obtain

1
uz(x):x+)\/ xt(t+§t> dt
0

which gives

/\2
ug(z) = x + 3% + o7
In a parallel manner, we find
O P T P L
Up(z) =2+ -+ —x+---+—x, n>
3 9 3n

2.6 The Direct Computation Method

We next introduce an efficient traditional method for solving Fredholm inte-

gral equations of the second kind ( K(x,t) expressed in the form defined by

K(x,t) = g(x)h(t)

Accordingly, the equation (?7) becomes

b
u(z) :f(a:)+Ag(x)/ h(t)u(t)dt

It is clear that the definite integral at the right-hand side of ( ¢. This means

that the definite integral in the right-hand side of ( «, where « is a constant.
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In other words, we may write

/ ’ h(tu(t)dt = o

It follows that equation becomes

u(z) = f(z) + Aag()

It is thus obvious that the solution wu(z) is completely determined by ( «.

This can be easily done by substituting Eq.
Question 1:

Consider here the Fredholm integral equation

u(z) = sin~!(x) + (g - 1) xr — /01 xu(t)dt

Solution

Applying the modified decomposition method , we first split the function
f(z) into
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Therefore, we set

up(z) = sin~!(x)

ui(x) = (g - 1) T — x/ol sin™!(t)dt = 0

Consequently, the components wu,(z) = 0 for n > 1. The exact solution is
readily obtained:

u(z) = sin~!(x)

Question 2 Consider the Fredholm integral equation

u(z) =sinx + cosz — 2z + g + / (x — t)u(t)dt
0

Solution

We first split the function f(z) into
fo(z) =sinz + cosx

fi(z) = =2z + g

We then set

up(z) = sinx + cosx
T ™
ui(x) = —2x + 5 + [ (z—tup(t)dt =0
0

Consequently, the components wu,(z) = 0 for n > 1. The exact solution is
readily obtained:

u(z) = sinx + cosx
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CHAPTER-3

VOLTERRA INTEGRAL EQUATIONS

3.1 Converting IVP to Volterra equation

y' (@) + p(x)y () + q(z)y(z) = g(x) (1)

Subject to the initial conditions:

Where a and  are constants. The functions p(x) and ¢(z) are analytic
functions and g(x) is continuous throughout the interval of discussion. To

achieve our goal, set:

where u(z) is a continuous function.

integrating both sides of (3) from 0 to = yields

O‘r y'(x)dr = fox u(t)dt (4)
Y (x) - ¥'(0) = [g ult)dt

or equivalently

vy (x)=0+ fox u(t)dt (5)
integrating both sides of equation (5) from 0 to x
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y(x)-y(0)=B(z) + [ [y w(t)dtdt (6)
y(x) = a+pr+ [[(x—t)ult)dt (7)
substituting (3),(5) and (7) into the IVP
u(x) + p(x) [B+ [y u(t)dt] + q(z) [+ Bz + [ (x — t)u(t)dt] = g(z) (8)

(8) can be written in the standard volterra integral equation form

u(z) = f(z) — /O " (e, tyut)dt
where

u(z) = f(z) — /0 " yu(t)dt
k(z,t) = p(z) + q(x)(x — 1)

f(x) = g(z) — [Bp(x) + aq(x) + Brq(z)]

Question 1: Transform the initial value equation 3" — 3y” — 6y’ + 5y =0
subject to the initial conditions y(0) = ¢'(0) = y”(0) = 1, into an equivalent
Volterra integral equation.

Solution:

Let ¢ (z) = u(z) (1) Integrating both sides of (1) from 0 to = and using

the initial condition y”(0) = 1, we get

y'(x) =1+ /0z u(t)dt. (2)
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Integrating (2) twice and using the proper initial condition, we find

y(r)=1+z+ /Ow /Otu(t)dtdt

and

y(x):1+a:+%x2+/x/x/xu(t)dtdtdt (3)
y(x)=1+z+ /Ox(a: —tu(t)dt (4)

y(z) =142+ %xQ + % /Ox(x —ut)dt (5)

Substitute (1), (2), (3), (4), (5) in the IVP:

u(x):4+x—gx2+/ox (3+6(x—t)—g(:c—t)2)u(t)dt

Question 2: Find the equivalent Volterra integral equation to the following
initial value problem y"(x) + y(z) = cos(z), y(0) =0, ¥'(0) =1

Solution:

Set ' (x) = u(x) (1).

Integrating both sides from 0 tox
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u(t) dt
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Substitute (1) and (3) in the IVP:

u(x) +x+/0$(x—t)-u(t) dt

cos(z)

cos(z) —x — /Ox(x — t)u(t) dt
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The equivalent Volterra integral equation.

3.2 Converting Volterra Equation to an ODE

In this section, we present the technique that converts a Volterra integral
equation of the second kind to an equivalent differential equation. This may
be achieved by applying the important Leibniz rule for differentiating an in-

tegral equation.
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Questionl: Find L [*(z — t)*u(t) dt.
Solution:

We know that

e _[er 45(a) daa)
dx [/a(x) F(%t)dt] _/a(g;) %am‘F(!L’,ﬁ(ﬁf))'W—F($,0z(x)). o

Here, a(z) =0 and = o/(z) =0, f(x) = z and = ['(z) = 1,
OF — 0 (3 —t)?u(t) = 2(x — t)u(t). Therefore,

o — oz
% (/j(x —1)%u(t) dt> = /Oz 2(z — t)u(t) dt

Question 2: Find L [(z — t)u(t) dt.

Solution:
alz) =0, B(z) ==z,
o(x) =0, fz)=1,
af B
Therefore,




3.3 The Adomian Decomposition Method

The decomposition method mostly establishes the solution in the form of a
power series. In this method, the solution u(x) will be decomposed into an

infinite series of components, given by the series:
o

u(z) =Y un(z) (2)
n=0

with ug(z) identified by all terms out of the integral,

. Substituting (2) into the Volterra integral equation of the second kind of

the form yields:

D un(x) = f(z) + )\/Oxk(x,t) (Z un(t)> dt

which by using a few terms of the series becomes:

up(z)+uy(x)fug(z)+... = f(;v)+/\/: k(az,t)uo(t)dt+)\/ox K(x, t)uy (t)dt+

A / "o (1)t + A / (s tyus ()t + .

The components u;(z),7 > 0 of the unknown function u(z) are completely

determined by using the recurrence manner
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and so on.
The above-discussed scheme for the determination of the components u;(x), 7 >

0 of the solution u(z) can be written in a recurrence relation as

up(z) = f(x) and
Upt1(T) = )\/ k(z,t)u,(t)dt,n > 0.
0
The components u;(x),i > 0, follow immediately upon integrating the eas-
ily computable integrals. With these components determined, the solution
u(z) of VIE is readily determined in a series form upon using (2). However,

for concrete problems, where (2) cannot be evaluated, a truncated series

Zﬁ:o un () is usually used to approximate the solution u(x).

Questionl: Consider the Volterra integral equation
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u(r) =1+ /093 u(t) dt

Solution
It is clear that f(x) =1, A =1, and k(z,t) = 1. Using decomposition series

solution and the recursive scheme to determine the components u,,, n > 0:

up(z) =1

ui(x) = /Ox uo(t) dt = x

xX x 1
us(z) = / wy (t) dt = / tdt = §x2
0 0

uw(z) = up(x) + up () + uz(x) + ...\

1
u(x):1+x+§x2+...

and this converges to the closed form solution

. Question 2 :Consider the Volterra integral equation:

u(zr) =x + /Ox(t — x)u(t)dt

Solution

up(z) =
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T3 2
_2x3 BRI
B 6
3
6

in a closed form by

u(z) =sinx

. Question 3: Consider the Volterra integral equation
sy L [°
u(z) = (6x — ) + 3 tu(t) dt
0

Solution

1 [* @ 1
uy () = 5/ tug(t) dt = / t(6t — t*) dt = 2° — Ex5
0 0
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1 [* 1 [* 1 1 1
=— [ t-wt)dt== [ t(t® — —=t")dt = —2° — —2a
ua () 2/0 () 2/0 (=3t dt = 157" — 15"
u(z) = (6x — 2°) + (2° — ix‘r’) + (ix5 — L:I:7) -
10 107 1407 T

u(z) = 6x(Bycancelling)

3.3.1 The Modified Decomposition Method

In Volterra integral equations where the non-homogeneous part f(x) con-
sists of a polynomial that includes many terms, or in the case f(x) contains
a combination of polynomials and other trigonometric functions, the modi-
fied decomposition method works well. To achieve our goal, decompose the
function f(z) into two parts such that f(z) = fo(x) + fi(z) where fo(x)
consists of only one term, or if needed, more terms in fewer other cases, and

£1(z) includes the remaining terms of f(z).
w(x) = folx) + fi(x) + A / k(e u(t) dt (4)
Substituting (2) in (4) and expanding
o) + 1 () + () + . = fola) + fr(z) + A /0 (a, t)uo () dt

+A /x k(z,t)uy(t) dt + )\/w K(z, t)us(t)dt + ....

The components u;(x), i > 0 of the unknown function u(z) are determined
in a modified recurrence relation by assigning fy(z) only to the components

uo(z), whereas the components fi(z) will be added to the formula of the
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component u(x).

uo(z) = fo(x)
ur(z) = fi(x) + /\/Ox K(x,t) - ug(t)dt

un(z) = )\/Ow k(. s (8) dt

ug(z) = )\/Ow k(x,t)us(t) dt

This implies that
uo(x) = fo(x)
u(z) = fi(x) + )\/Ox k(x,t)uo(t)dt
Upy1(x) = )\/: k(x,t)u,(t)dt,n > 1
Question 1: Consider the equation u(x) = cosx +sinz — [ u(t) dt.

Solution

Decompose the function f(x) into fo(z) = cosz and fi(x) = sinz. Conse-

quently, ug(z) = cosz,

x
uy(z) =,sinz —/ costdt = sinx — [sint|j = sinx —sinz = 0
0
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So, the other components u;(z) =0, i > 2.

u(r) = cosx

3.4 The Variational Iteration Method

The method admits the correction function in the form of

Uns1(T) = up(z) + /Om A(t) (Lup(t) + Ny, (t)) —g(t)dt, n>0

To solve any Volterra integral equation by using this method, first transform
the equation to its equivalent ODE where the Leibniz rule should be used.

Next, determine A the zeroth component ug(x) as indicated

uo(z) = u(0) + 2/ (0)  (2)  wup(z) = u(0) + zu/(0) + =" (0) (3)

Here zeroth component ug(x) can be selected according to the order of the
resulted ODE. 1, 2, 3 respectively have the first term, the first two terms,
and the first three terms of the Taylor series of u(x) at x = 0. The exact
solution is given by
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Questionl: Solve the Volterra integral equation by using the variational

iteration method.
ulz)=1—z+ /Ox(x —tu(t)dt (1)
Solution
ulz)=1—z+ /gg(x —t)u(t) dt
0
Differentiating both sides and using Leibniz:
u'(z)=—-1+ /Om u(t)dt (2)

The initial condition «(0) = 1 obtained by using = 0 in(1) and hence select
uo( ) = 1. The correctional function for (2) is w,41(x) = un(x) — [ (u

fo un(r) dr) dt. We select A = —1. Select ug(z) = 1 which leads to:

A t 1
uy(x) = —/ (uo(t)—i—l—/ 0()d)dt—1—x+5x
0 0
1, [*, ! 1 1 1
ug(z) = 1—95—1—595 - (uy(t)— i uy(v)dv ) dt =1— x+2|a: 5@ +4‘x

- 1 1
T IRRT 1\k k_ 1 B o _1\n
u(z) = nll_{lolo up(z) = nh_r)lgo kEO( 1) i 7}1_1)20 (1 T+ —2'37 4+ (—1) L

u(r) =e
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Question 2: Solve the Volterra integral equation by using the variational
iteration method u(x) = 2sinz — $a% + [ (x — t)u(t)dt.
Solution:

u(x) = 2sinz — z2% + [(x — t)u(t)dt. Differentiating both sides:
/ 1 2 ’
uw'(x) =2cosx — 5% +/ u(t)dt
0

By using x=0 we find u(0)=0 The variational iteration method admits the

use of a correction function for the equation by:

Uns1(x) = u,(z) — /Ox (u;(t) —2cost + g — /Ot un(r)dr) dt

Initial conditions:

up(z) =0

w(z) = — /O (u;)(t) ~ 9cost— %ﬁ - /Ot uo(r)dr) dt

) 1,
=2sinx — -

1
ug(r) = 2sinx — 6x3

1 v 1 v
ug(r) = 2s8inx — 6x3 = /0 (u’l(t) —2cost+ §t2 — /0 ul(r)dr) dr

1 1
— 2 .3 =3
T T ”
1 1 1
uz(x) =2z — 6$3 + 5175 - ﬁﬂ
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The solution is a series of the form:

1 1 1
u(x):x+(x—gx?’jtaxk"—ﬁﬂ—l—...

u(r) =x +sinx
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