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ABSTRACT

Let G be a graph, the energy of graphs is the sum of the absolute values
of the eigen value of its adjacency matrix.In this paper we characterize graphs
having the maximum energy among all graphs with n vertices. Also we know that
complete graph having maximum energy.But various families of hyperenergetic
graphs which have an energy larger than the complete graphs.The energy of a
graph on n vertices is atmost g(l + \/ﬁ) if and only if G is strongly regular
graph with parameters.This enables to find an infinite family of maximal energy
graphs.Using Hadamard matrix, we can find maximum energy graph for every
positive integer.Also providing an upper bound for the energy, which is sharp
for every special values of n and this bound is achieved for all even squares.For
n that is not a square of even number this bound is not sharp, the problem
of maximal energy remains open in general case.The method developed here

provides a way to improve the upper bound for energy for arbitrary n.
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INTRODUCTION

The energy of a graph is a concept that arose in theoretical chemistry.In
mathematics, the energy of graphs is the sum of the absolute values of the
eigen value of its adjacency matrix.All graphs considered in this paper are
finite, simple and undirected.Here we discuss to characterize graphs having the
maximal energy among all graphs with n vertices.

This paper consist of three chapter.First chapter deals with the basic concepts
of the energy of graphs.Second chapter gives the idea of energy of graphs with
orthogonal matrix. And also discuss graphs having energy larger than complete
graphs called hyperenergetic graphs.Third chapter consist of strongly regular
graphs with certain parameters is called maximal energy graphs.This enables
to find an infinite family of maximal energy graph.The maximal energy graphs
are essentially the same objects as certain hadamard matrix.Thus it provides a

upper bound for the energy.



Chapter 1

PRELIMINARIES

Definition 1.0.1. A graph G consist of a finite non-empty set V' of objects
called vertices and a set E of two element subsets of V' of objects called edges. The

set V and E are the vertex set and edge set of G respectively.

Example 1.0.2. V = {vy, vg,v3}, E = {(v1,v2), (v2,v3) }

Definition 1.0.3. A simple graph is an unweighted, undirected graph
containing no graph loops or multiple edges.A simple graph may be either

connected or disconnected.

Definition 1.0.4. Let S,, be the family of simple graphs with n vertices vy, va, . . ., Up.
Adjacency matriz A = A(G) of a graph G € S, is a square matriz of order n

whose entry in the i™™ row and 7™ coloumn is defined as :

1 of the vertices v; and v; are adjacent.
aij =

0 otherwise



Definition 1.0.5. For a graph G € S,, with adjacency matriz, the characteristic

polynomial of a graph is the characteristic polynomial of the adjacency matriz:
qb(G) = qu(G, )\) = det(/\f — A)
Its roots are called eigen values.

Definition 1.0.6. Let G be a graph of order n with energy E(G) = Y |\i|. The
i=1

set {1, Aa, ..., A} is the spectrum of G and denoted by SpecG.

Definition 1.0.7. A symmetric matriz is a square matriz that is equal to its
transpose,

A is symmetric & A = AT

1 -1
Example 1.0.8. A=
-1 1

-1
Transpose of A, AT =
-1 1
A=A"

Definition 1.0.9. A square matriz A is said to be orthogonal matriz if the

product of the matriz A and its transpose AT is an identity matriz.ie,

AAT = ATA =1



cosae 0 sina

Example 1.0.10. A = 0 1 0 | isorthogonal.

—sina 0 cosa

cosae 0 sino
A= 0 1 0

—sinae 0 cosa

cosae 0 —sina

A"=10 1 o

sinae 0 cosa

cos’a + sin*a 0 —cosasina + cosasina
AAT = 0 1 0
—sitnacosa + sinacosa 0 sina + cos*a
-1 01
=101 0|=1

0 01

Definition 1.0.11. A set of vectors form an orthonormal set if all vectors in
the set are mutually orthogonal and all of unit length. An orthonormal set which

forms a basis is called orthonormal basis.

Definition 1.0.12. A matriz P is called orthogonal if its coloumns form an
orthonormal set and call a matriz A orthogonally diagonalizable if it is
diagonalized by D = P~YAP with P an orthogonal matriz.If A is an n x n
symmetric matriz, then any two eigen vectors that come from distinct eigen

values are orthogonal.

Definition 1.0.13. In the finite dimensional case, a square matrixz P is called



a projection matriz if it is equal to its square,
P*=P

Definition 1.0.14. A square matriz P is called orthogonal projection matriz
if P2 = P = PT for a real matriz and respectively P> = P = P* for a complex

matriz, where PT denotes the transpose of P and P* denote adjoint.

Line Graph
A graph with p vertices ¢ edges will referred to as (p, q) graph. Let G be a
(p, q) graph, the line graph denoted L(G), the graph whose vertices are the
edges of G.The number of vertices and edges of L(G) be n and m respectively.
The degree of the vertices of G are 01,0, ... ,0p.
Then

1 p
n=gq: m:§Zc5i2—q (1.1)
i=1

Let D(G) = diag(éy,0,...,6,).Also A(G) be the adjacency matrix of G.Then
D(G) + A(G) is a non negative definite matrix and its eigen valus are non
negative.

Let g1, po, - . ., p1, be the eigen value of D(G) + A(G), then
p p
Zﬂi = Z5i:2q (1.2)
i=1 i=1
Definition 1.0.15. A vertex of degree zero is called isolated vertex.

Definition 1.0.16. If the vertices of a graph G have same degree, then G is

called regular graph.



Chapter 2

ENERGY OF GRAPHS

Let G be a graph, the energy of graphs is the sum of the absolute values of the
eigen value of its adjacency matrix. Here we characterize graphs having the
maximum energy among all graphs with n vertices. We know that complete
graph having maximal energy. But various families of graphs which have an
energy larger than the complete graphs. Here we consider the hyperenergetic

graphs which have energy larger than the complete graphs

2.1 Enmergy of Graphs

Definition 2.1.1. For a graph G € S,, with adjacency matriz A = A(G) and

the eigen values Ai,As ... Ay, the energy

m

E=E(G)=E(A) =) _ |\

k=1
sum of all eigen values of a graph is zero, E = 2E™, where E* denote the sum

of positive eigen values.



Example 2.1.2.

011

Adjacency Matrix Acs= |1 0 1

1 10

Characteristic polynomial=det(A] — A)

A—1 -1
AMl—A=1-1 ) -1
-1 -1 A

det(\ — A) = \* =3\ —2

A=-1,-1,2

)\1:—1,)\2:—1,A3:2

Eigen valueis Ay = =1, g = —1, A3 =2

Energy of graph = Z | Akl

k=1
= | M|+ |A2] + |3
=[—1[+[-1[+[2|
=4

Definition 2.1.3. The product of two graphs Gy and Go denoted by G X Go

15 the graph with vertex set V(Gl) X V(GQ) such that two vertices

(xl,xz) € V(G1 X Gg) and (yl,yg) S V(Gl X Gg) are adjacent if and only if

(zl,yl) € E(Gl) and (:z:g,yQ) € E(Gg)



Definition 2.1.4. The sum of two graphs G1 and Go denoted by G1 + Go is
the graph with vertex set V(Gl) X V(Gz) such that (xl, xz) € V(G1 + Gz) and
(yl,yg) € V(G1 + Gg) are adjacent if and only if either (:vl,yl) € E(Gl) and

T2 = Y2 OT (x27y2) S E(GQ) and Ty =Y

Lemma 2.1.5. Let G1 and Gy be two graphs with disjoint vertex sets of order
ny and ny respectively.Let Nj,i = 1,2,...,ny and N\j,j = 1,2,,...,ny be the
eigen values of the graph G and Gy.Then the eigen value of G1 x Gy are \;Aj,
1=1,2,,...,n1,] =1,2,,...,n9

Lemma 2.1.6. Let G1 and G5 be two graphs with disjoint vertex sets of order nq
and ny respectively.Let Nt = 1,2,...,ny and X\j,j = 1,2,,...,ny be the eigen
values of the graph G and Gy.Then the eigen value of Gy + Go are A\; + A;,

i=1,2,,....n1,j=1,2,,...,n9

Lemma 2.1.7. If an eigen value of a graph is a rational number, then it is an

integer.
Theorem 2.1.8. The energy of a graph cannot be an odd integer

Proof. Consider a graph G and Aj,\s ...\, be positive eigen values.Then the

fact that sum of all eigen values of any graph is equal to zero

Denote Ay + Ao + ... A\,, by A
By lemma 2.1.5 )\ is an eigen value of some graph H isomorphic to the sum
of m disjoint copies of the graph G.
Suppose
B(G) =
2\ = (2.1)

A=q/2



If ¢ would be an odd integer,then ¢/2 would be an non integral rational number

which is contradiction to lemma 2.1.7 O

Theorem 2.1.9. The energy of a graph cannot be the square root of an odd

nteger,

Proof. Consider a graph G and A,)\s ...\, be positive eigen values.Then the

fact that sum of all eigen values of any graph is equal to zero

E(G) =" In=2>" A
k=1 k=1

Denote Ay + Ag + ... A, by A
By lemma 2.1.5, A is an eigen value of some graph H isomorphic to the sum of
m disjoint copies of the graph G.
By lemma 2.1.6, A\? is an eigen values of the product of two disjoint copies of
the graph H.
Suppose
E(G) = V4
22 =/q (2.2)
M\ = q/4
If ¢ would be an odd integer, then ¢/2 would be an non integral rational number

which is contradiction to lemma 2.1.7 O

Corollary 2.1.10. The energy of a graph cannot be the square root of the

double of an integer.

Theorem 2.1.11. Let r and s be integers such thatr > 1 and 0 < s <r —1

—-

and q be an odd integer. Then E(G) cannot be the form (25q);

Proof. For r =1 and s = 0, Theorem 2.1.7 reduces to Theorem 2.1.8

For r =2 and s = 0, Theorem 2.1.7 reduces to Theorem 2.1.9

9



Suppose now that E(G) = q%, q is an odd integer

Then
2.3
o (23)
27°

If ¢ would not be divisible by 2",then A" would be an non integral rational

number,which is contradiction to lemma 2.1.7. [l

Definition 2.1.12. The tensor product of two graphs G, and G is the graph
G1 ® Gy with vertex set V(Gl) X V(Gg) and in which the vertices (ul, uz) and

(Ul, Ug) are adjacent if and only if uiv, € E(Gl) and usvy € E(Gg).

Definition 2.1.13. The tensor product A ® B of the r X s matriz A = (aij)
and the t X u matriz B = (bij) 1s defined as the rt X su matriz got by replacing

each entry a;; of A by the double array a;;B.

Lemma 2.1.14. If A is matriz of order r with spectrum {\, Az ... \.} and B
is a matriz of order s with spectrum {1, o . . . pis} then the spectrum of A® B

is {ip; 11 <i<r1<j<s}

Proof. Let X and Y be eigen vectors corresponding to the eigen values A and
i of A and B respectively.
Then AX = AX and BY = puY

Now for any four matrices P, @, R and S,
(P ® Q) (R ® S) = PR ® S, whenever the products PR and QS are defined.

Hence (A®B)(X®Y) =AX ® BY =X ®uY = )\,u(X®Y). As (X®Y)
is a non-zero vector, A is an eigen value of (A ® B).
Conversely any eigen value of (A ® B) of the form A;u1; for some 7 and j. To
see this we note that

(A®B)=(A®L)(I,®B) = (I,® B)(A® I,)

10



In otherwords (A ® B) is a product of two commuting matrices.

Now the spectrum of (IT ®B ) is the spectrum of B repeated r times and similar
statement applies for the spectrum (A ® Is).

Now if C' and D are two commuting matrices of order ¢,with spectra oy, as . . . ay
and .05 ... B respectively, then each of the ¢ eigen values of C'D is of the form
a;3; for some 7 and j.

This proves the result. 0l

Corollary 2.1.15. If G1 and G5 are any two graphs

Proof. Let the spectra of Gy and G5 be A, A\y... A\, and pq, pio . . . s respectively

Then
E(Gi®Gy) =) Pl
,J

=D Dl 24)
i=1 j=1

= B(G1)E(Gs)

Corollary 2.1.16. For any non-trivial graph G, E(G) >1

Proof. Suppose E(G) < 1.Then E(G RGERG...® G(p times)
E(G@G@G...@G) :E(G)p—>0asp—>oo

Hence the graph GRGRG...® G(p times) —the totally disconnected graph
which is absured.The same arguement show that not all the eigen values of the
graph G can be absolute value less than 1.Consequently if E(G) = 1,then the
absolute value of all the eigen values of G must be less than 1, a contradiction.

]

11



2.2 Characterization by projectors and
orthogonal matrix

The standard basis for R" is Iy, s, ..., E,,where F; is the element of R" with
1 in the j™ place and zeros on all other place.If T : R® — R™ is a linear

transformation defined by

k=1

If7: R" — R™ is a linear transformation and /3 a base in R™ by [T]; we denote
the matrix with respect to the basis 5.

Let A be a real symmetric matrix of type n X n and e be orthonormal eigen
vectors for A, that is Ae, = Akey, k = 1,...,n and Ej, be the standard basis in
R,. If Q is a linear operator defined by Q(E}) = ey, then Q' AQ = D, where
D= diag()\l, A2y eny )\n). A real matrix A is symmetric if and only if there is an
orthogonal matrix ) such that Q'AQ = D , where D = diag()\l, Ao, ..., )\n).
Also tr (A) =ay1+ ...+ ay, = Za“’ where a;; represents the entry on the

)

i'" row and j' column of A. Equivalently, the trace of a matrix is the sum of

its eigenvalues, making it an invariant with respect to a change of basis. Also

tr(QAQ) = tr(AQQ™Y) = trA.

Theorem 2.2.1. Suppose that A is a real symmetric matriz with trA = 0. If
P is an orthogonal projector matriz then E = E(A) > 2tr (AP) s and

E =2mazx.tr (AP), where mazx is taken over all orthogonal projectors P.

Proof. Let ()\1, Ao,y )\n) be eigenvalues of A.
Suppose that A\; > Xg > ... >\, > 0and \; <0 for k& > p.
Let e = (el, e ,en) be the orthonormal basis of eigenvectors of the matrix

A and Py be a projector onto the p dimensional space corresponding to non

12



negative eigenvalues.

Then, since [A], = diag(\i, Ma, ..., \,) and
tr(ARy) = tr([4], [B)],),

it is clear that E*(A) = tr(ADR).

We first verify that for any vector x € IR,

(x,Az) < (x, APOx)

If, T = Z tkek,
k=1

then , Az = Ztk/\kek,

k=1

Pyxr = Ztkek and
k=1

p
APQ.T = Z tk)\kek~

k=1

Hence , (z, Az) Ztk/\k and

(z, APyz) = Z 2\

therefore, we have (z, Az) < (z, APOx).

Let a = (f1, fa, .- -, fn) be an orthonormal basis and

Afe = f;
7=1
Then
trA = Zaii = Z(fzaAfz)
i=1 i=1

Now let P be an arbitrary orthogonal projection.

Let 8, = (bl, e br) be an orthonormal basis for ImP and 5, = (br+17 ..

an orthonormal basis for KerP.

Then 5 = ;1 U S35 is a basis and

13
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where [, is a unit matrix.
Since Pb; =b;,i=1,...,rand Pb; =0,i=r+1,...,n,
we find APb; = Ab;,i=1,...,rand APb; =0,i=r+1,...,n.

Then, by (2.5)and(2.6),

]

Lemma 2.2.2. P is an orthogonal projector if and only if P = (I + O)/2,

where O is an orthogonal symmetric matriz.

Proof. Suppose that O is an orthogonal symmetric matrix and P = (I + O) /2.

Then P is symmetric,

O=0" 00"'=1

and therefore 0% = I.

Hence (I1+0)(I+0)=1+0+0+0*=2(1+0),

that is P? = P; thus, since P is symmetric, we conclude that P is an orthogonal
projector.

Conversely, if P is an orthogonal projector and O = 2P — I, then

O? = (2P —I)> = 4P — 4P + I = I, hence O? = [; moreover, since P is
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symmetric, O is symmetric, and hence O' = O = O~!, that is O an orthogonal

matrix. O

Theorem 2.2.3. Let G be a simple graph with n vertices and O° (n) be the

family of orthogonal symmetric matrices of type n x n. Then

E(G) < g+max 0] < = 5 Zy ;ng
where max is taken over all O € O° (n)
It is clear that
mazE(G) < g—kmarv—]O\l < - 5 + ;m

where max is taken over all G € S,,.

Proof. 1f O,, is an orthogonal symmetric matrix with |o;;| = \/% , 05 = \/% and
> 0ij = n, then O, is extremal.

Step 1: If O = [0;;] is an orthogonal matrix, then |Of; < n2. Since O = [0i] s
an orthogonal matrix Z 0%, =1, and Y |o;;|* =

irj
Hence (Z ]0”|) <n? E loi;|*> = n®.
1, Y]
The equality holds if and only if |o;;| = ¢,,= constant,
i.e.if and only if |o;;| = 1/y/n.

Step 2 : If O = [0;4] is an orthogonal matrix, then
ot < 24 Zloly (2.7)

If P= (I + O)/2 is a projector and vy = (1, o 1),
then [Puo|? =Y pij =2+ 5> 045

Since |Pvg|* < |wol? = n,

we find )" 0;; < n.

Hence, using > 0;; = 3(X- |oy;| + 0i), we find (2.7).
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If A is the symmetric (0,1)-adjacency matrix of G and AP = [b;],

then b;; = Y axp;r and therefore tr(AP) = Z b = f: ik Pik-

Hence, simc(]ec A is the symmetric (0, 1)—adjace;cy ma;fiz tr (AP) < Z pfj

By Lemma 2.2.2, P is an orthogonal projector if and only if P = (}7&:— O) /2,

where O is an orthogonal symmetric matrix.

If 4 7"é japij = Oij/2>

1 1
tr((AP) < EZOZ- SZZOM + |04

i#] 1#£]
<21 Lo,
4 4
L
—4 4
and therefore
maxE(G) < g + max%|0|1 < g + %n%

Theorem 2.2.4. For a graph G € S, E(G) =maxr ), 0, where
i#,(i4) G
mazx is taken over all orthogonal symmetric matrices O = |o;;]. There is a

mazimal orthogonal symmetric matrix such that E (G) = > 0y
i, (i) G

Proof. Since O° (n) is compact, there is a maximal orthogonal symmetric matrix

O = [0;] such that E(G) = > oy O
i#,(i.d) ec

16



2.3 Application

Let us denote
ot = Z o:;-
gt (i) ec

and let dj;, denote the index of a vertex v, € G.

Proposition 2.3.1. Let m be number of edges. Then

E(G) <Y Vdi < Vamn

keG

Proof. By Theorem 2.2.4, there is a maximal orthogonal symmetric matrix

O = [o0;] such that E(G) = > o;;.Let
i#,(i.d) ec

ot = Z oy
it (i) ec

By Cauchy Schwarz inequality, (o7)? < d; > (Oi*j)? < d;. Hence
g, (i) €6
ot <V/d; and E(G) <Y of <3 +/d;. Since Y dj, = 2m.
i i k

We get the inequality,

E(G) < V2mn

Let F, = mamGesnE(G). We say that an orthogonal symmetric matrix
O = [o] is extremal if E,, = Y o, and for G € S, that it is an extremal energy
i7#]
graph if £, = E(G)

For a given real matrix M = [m;;], we define a graph G = G by (v;,v;) € G
if and only if m;; > 0. Since E(G, O) = > 05> 0;; and
i#5,(4,5)EG i#]
E(GO,O) = ;@; , by Theorem 2.2.4, we get:
i#j

17



Proposition 2.3.2. For every integer n > 1,
1
E, = mazoecos(n) Z 027;- = 5MAL0c0S (n) (Z 0ij + loij|)
i#j i#]
and there is an orthogonal symmetric extremal matriz O = [0;;] and an extremal

energy graph G € Sn.

Since O € O%(n) if and only if —O € O%(n) , we have | > 0;;| < n for

O € O%(n)

Proposition 2.3.3. Suppose that a matriz O = [o;;] of type n x n is an or-
thogonal symmetric extremal matriz. Then E, = E} := % + %n% if and only of
(1) ZJ: 0ij = 1

(2)loy| = 1/v/n

(3)oi; <0

Proof. Let P = (I +0)/2. If E, = E} , then Y 0;; = n. Hence |pv|* = n
and therefore Pv = v; so we get (a). The condition (a) can be replaced with
Z 0j5 = 1. OJ

We can verify that E, = % + %n% for n = 4% using orthogonal matrices.

We construct orthogonal matrices O,,n = 4%, of type n x n with elements

0;j = £1/+/n by induction (we first construct Ayx):

-1 1 1 1
1 -1 1 1
As =
11 -1 1
11 1 1]

18



We also need By:

1 1 1 -1
1 1 -1 1
B3 =
1 -1 1 1
-1 1 I 1

Using the tensor product we define Ayey1 = By ® Ayr:

A4k A4k A4k —A4k-

A4k+1 _ A41€ A4k —A4k A4k

A4k —A4k~ A4k: A4k

_—A4k A4k A4k A4k

Let O,, = 1/y/nA,. Using Proposition 2.2.3, we can verify that the matrices On
are extremal for n = 4% For n = 4 the complete graph is extremal, E; = 2.3 = 6;
the matrix O4 = %A4 is extremal. For n = 4% = 16, the matrix O = iB4 ® Ay
is extremal: [Of| = > 0} = 12.12/4 + 44/4 = 36 + 4 = 40 = E\;

i#j
|O16]/2 = 161/16/2 = 32

2.4 Hyperenergetic Graphs

The energy of a graph increases with the increase of the number of vertices and
edges. Among n vertex graphs,the complete graph K, has maximal energy. It
was soon shown that there exist graphs whose energy exceeds E(Kn) and

E(Kn) =2n—2

Definition 2.4.1. A graph G,such that E(Kn) > 2n — 2 1s said to be

hyperenergetic.

Proposition 2.4.2. Let G be (p, q) graph with q > 2p.The line graph of the

complete graph on n vertices is hyperenergetic if n > 5.
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Proof. The complete graph K, is regular of degree n — 1.The line graph of K,
has n(n — 1) /2 vertices. Then the characterstic polynomial of a regular graph

R and of its line graph L(G) are related as
S(L(R),z) = (z+2)" " 8(R,x —r +2)

where n and r the number of vertices and degree of R.

Then

¢(Kn,m) =(z—n+1) (x+ l)n_l.

we calculate,

E(L(K,)) =2n* —6n

which for n > 5 is greater than

E(kn(nfl)/Q) = n2 —n—2.

Corollary 2.4.3. [t is possible to construct hyperenergetic graphs with n

vertices for every n > 9.

Proof. Let G be (p, q) graph with ¢ > 2p.
Then L(G) is hyperenergetic (n, m) graph’
Using Cauchy Schwarz Inequality,
N 2
(Z ad%‘) < Z a? Z b?
i=1 i=1 =1

Choosing N = p,a; = d¢; and b; = 1.
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Using (1.1) and (1.2) We arrive at

Since L(G) has more than 2n edges.By proposition 2.4.2 can be applied to

it. 0J

Corollary 2.4.4. Let p > 5, let G be a (p7 q) graph.If ¢ > 2p, then L? (G) 18

hyperenergetic.

Corollary 2.4.5. Let p > 5, let G be a (p, q) graph.If ¢ > 2p then all iterated

line graphs Li(G),i =23,..., are hyperenergetic.
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Chapter 3

Maximal Energy Graphs

If G is a graph on n vertices,then E(G) < %(1 + \/ﬁ) must hold and that this
bound is sharp if and only if G is strongly regular graph with parameters given
by certain functions of n. Strongly regular graphs with these parameters have
been called maximal energy graphs.This enables us to find an infinite family of
maximal energy graphs.Using result on Hadamard difference sets,we construct
regular graphical Hadamard matrices of negative type of order 4m* for every
integer m.If m > 1,such a Hadamard matrix is equivalent to a strongly regular

graph with parameters (4m4, 2m* + m? m* + m?2,m* + m2).

3.1 Maximal Energy Graphs

Definition 3.1.1. A strongly reqular graph (srg) with parameters (n,k,)\,u)
s a graph with n vertices that is reqular of valency k(l <k<n-— 2) and that
has the following properties:

o For any two adjacent vertices x,y there are exactly A vertices adjacent to both
x and y.

o For any two non adjacent vertices x,y there are exactly p vertices adjacent
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to both x and y.

If 4 =0, then G is a disjoint union of complete graphs, whereas, if ; > 1
and G is non-complete, then the eigenvalues of G are k (the trivial eigenvalue)

and the roots 7, s of the quadratic equation
Prpu—d+pu—k=0 (3.1)

The eigenvalue k has multiplicity one, whereas the multiplicities m, of r and

m, of s can be calculated by solving the simultaneous equations
m,+ms=n—1, k+m,r+mss=0

Theorem 3.1.2. If2m > n and G is a graph on n vertices with m edges, then

the inequality

B(G) < 2 4 \fin - iz - (27 52)

n n
holds. Moreover, equality holds if and only if G is either 5Ky, K,, or a non-

complete connected strongly reqular graph with two non-trivial eigenvalues both

with absolute value \/(Zm — (277”)2)/@ —1).

Proof. Suppose that A\; > Ay > ... > A, are the eigen values of G(which are

real symmetric). Then we have

Moreover,since

must hold.We have
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Using this together with the Cauchy Schwarz inequality, applied to the vectors

(IA1l,1X2], -, [Aal) and (1,1,...,1) with n—1 entries, we obtain the inequality

PITERVICERIEESY

Thus we must have

B(G) < M+ /(n— D2m — N

Now the function F(z) : z 4+ /(n — 1)2[2m — 22] decreases the interval
27”“ < x < +/2m in view of 2m > n.
We see that 27’” < 27’“ < A\; must hold and hence F()\l) < F(%m) must hold.

From this,

E(G) < QTm + \/(n —1)[2m — (2%)2] holds.
As the eigen value for §K, are £1(both with multiplicity %) and the eigen
values of K,, are n — 1 and —1.

That is G is one of the graphs given in the second part of the theorem, then
equality must hold in (3.2).

Conversely, if equality holds in (3.2), then by the previous discussion on the
function F'(z) we see that A\; = 2% must hold.

Therefore it follows that G is regular with valence 277" Now, since equality must

also hold in the Cauchy Schwarz inequality given above, we have

A < \/(Qm— (2%)2)/(71— 1),for2<i<n

Hence, we are reduced to three possibilities:

1) either G has two eigenvalues with equal absolute values, in which case G
must equal %Kg.

2) G has two eigenvalues with distinct absolute values, in which case G must

equal K,.
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3) G has three eigenvalues with distinct absolute values equal to 27’” or

\/(Qm — (Q—m)z)/(n — 1), in which case G must be a non-complete connected

n

strongly regular graph as required. O]

Theorem 3.1.3. If2m < n and G is a graph on n vertices with m edges, then

the inequality

holds. Moreover, equality holds if and only if G is disjoint union of edges and

1solated vertices.

Proof. Since 2m < n, it follows that G must have atleast n — 2m isolated
vertices.

Consider the graph G’ that is obtained from G by removing n — 2m isolated
vertices. Then G’ has 2m vertices and m edges.

Thus we may apply Theorem 3.1.2 to immediately see that E(G’ ) < 2m must
hold, with equality holding if and only if G’ is the disjoint union of edges. The

proof of the theorem now immediately follows. O

Theorem 3.1.4. Let G be a graph of n vertices. Then

E(G) <

|3

(1++/n)

holds with equality holding if and only if G is strongly reqular graph with pa-

rameters (n, (n +v/n)/2, (n +2v/n) /4, (n+ v/n)/4).

Proof. Suppose G be a graph of n vertices and m edges.

If 2m > n,then the equality

E< 2m+\/(n—l)[2m—2—m2]

n n
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n24+n/n
4

and is considered as a function of m is maximized when m =

substitute the value of m to (3.2) we get

E(G) < 5(1++/n)

|3

Moreover,it follows by Theorem 3.1.2 and (3.1) that equality holds in

E(G) <224 \/(n —1)[2m — 277”2] if and only if G is a strongly regular graph
with parameters (n, (n + /n)/2, (n + 2y/n)/4, (n + y/n) /4).
If 2m < n, then by Theorem 3.1.4, E(G) <n

Therefore the proof of the theorem follows immediately. Ol

We note that an strongly regular graph with the parameters
(n, (n++v/n)/2, (n+2yn)/4, (n+2y/n)/4) will be called a maximal energy
of order n. The compliment of a maximal energy graph is a strongly regular
graph with parameters (n, (n — v/n)/2, (n — 2y/n) /4, (n — 2y/n)/4). However
the strong regular graph doesnot have maximal energy.Consider a family of
maximal energy graph pf order 4*, maximal energy graph of order n exist for
all even squares.To support this conjecture the case n = 4m*with m even.In
this chapter we show maximal energy graph of order 4m* also exist for all odd

integers.

Theorem 3.1.5. A maximal energy graph of order 4m* ewists for every positive

integer m

3.2 Regular Graphical Hadamard Matrix

A Hadamard matrix of order n is n X n matrix H with entries ££1 such that

HHT = nI,, where I, is the identity matrix of order n.
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we will see below that maximum energy graphs are essentially the same objects

as certain special Hadamard matrix.

Definition 3.2.1. A Hadamard matriz is said to be graphical if it is symmetric

and it has constant diagonal.

Note that if H is a graphical Hadamard matrix of order n with ¢ on the
diagonal and J is the n x n all ones matrix then A = %(J —0H )is the adjacency

;matrix of a graph of n vertices.

Definition 3.2.2. A Hadamard matriz is said to be regqular if all its row and

column sums are constant.

Let H be a Hadamard matrix of order n. If H is regular, then there exists
an integer [ such that H1 = HT1 = [1. Since HH' = nl,, we have [?1 = nl.

Hence [ = ++/n.

Definition 3.2.3. Let H be a reqular graphical Hadamard matriz with row
sum | and & on the diagonal. We say that H is of positive type, or type +1

(respectively, negative type, or type —1) if 6l > 0 (respectively, ol < 0).

It has been observed that if H is a regular graphical Hadamard matrix with
0 on its diagonal, of type e,then A = %(J —0H ) is the adjacency matrix of an

strongly regular graph with parameters

(n, (n — 5\/5)/2, (n — 25\/5)/4, (n — 25\/5)/4).

Conversely, if A is the adjacency matrix of an strongly regular graph with this
parameters then J — 2A4 is a regular graphical Hadamard matrix of type e.
Thus a maximum energy graph is essentially the same as a regular graphical

Hadamard matrix of negative type.
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Lemma 3.2.4. [f there exist a reqular graphical Hadamard matrixz of order n of
positive, or negative type, then there exist reqular graphical Hadamard matrices

of order 4n of both types.

In particular, we can make regular graphical Hadamard matrices of order
4% of any type for all positive integers k. Hence, for n a power of 4, there exist
strongly regular graphs with parameters for ¢ = 1 and for ¢ = —1. So we can

conclude that maximal energy graphs exist for all orders n = 4k.

Theorem 3.2.5. For every positive integer m there exists a reqular graphical

Hadamard matriz of order 4m* of positive, as well as of negative type.

In the Seidel Switching Section, we show how in this case the negative type

can be obtained from the positive type(and vice versa).

Definition 3.2.6. Let G be a finite group of order n. A k-element subset D of
G is called a (n,k,\) difference set in G if the list of “differences” dydy*,

dy,dy € D,dy # do, represents each non-identity element in G exactly A times.
Using multiplicative notation for the group operation, D is a (n,k,\) difference

set in G if and only if it satisfies the following equation in Z|G]:
DDV = (K — N)1g 4+ \G

where D = Y. d, DY = S dY and 1g is the identity element of G.A
deD deD

subset D of G is called reversible if DY = D. The difference sets considered

i this note have parameters
(n,k,\) = (4n?, 2n® £ n,n* £ n)

These difference sets are called Hadamard difference sets, since their

(1, —1)-incidence matrices are Hadamard matrices.
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Lemma 3.2.7. Let t be a positive integer and let D be a reversible
(482, 2t> +t,t* +t) Hadamard difference set in a group G of order 4t* such that
lg # D. Then there exists a 4t> x 4t% reqular graphical Hadamard matriz of

negative type.

Proof. Let Cay(G, D) be the Cayley graph with vertex set G and connection
set D. That is, the vertex set of Cay(G, D) is G, two vertices x,y € G are
connected by an edge if and only if zy~! € D. Let A be the adjacency matrix
of Cay(G, D). Since 15 # D, the diagonal entries of A are all zeros. Also A is
symmetric because D is reversible. Since D is a Hadamard difference set, we

have

A =T+ +t)J

Now let H = J — 2A. Then H is symmetric.Since A is the diagonal entries
of H are all ones (i.e.,d = 1). The row sums of H are constant, and they are

equal to [ = 4t — 2(2t*> — 1) = —2t. Hence
0l = -2t <0
Furthermore, from A% = 21 + (1> +t)J , we have
H? = 4]
Therefore,H is regular graphical Hadamard matrix of negative type. O]

Theorem 3.2.8. Let K = {1,a,b,ab} be a klein four group.Let

E1 = (1, Ao) U (a, Al) @] (b, AQ) U (ab, Ag)

and

E2 == (1, Bo) U (a, Bl) @] (b, Bg) U (ab, Bg)
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be reversible Hadamard difference sets in groups K x W1 and K x Wy respec-

tively, where |Wi| = w? and |Ws| = w3, w; and wy are odd A; C W, and
B; C W5 and
w? —w
|Ao| = |Ay| = |As| = — 5 .
w2 —w
|Bo| = |Bi| = | Bo| = = 5 <
w? +w
|As| = 12 :
21w
By = L2712
2

Let E = (1,5/(Ao, A1 : By, B1)) U (a, (A, A : By, B3))
U (b> V(A27A3 : BOpBl)) U (Clb, V(A%AB : BQ; B3))
Then

B wiws — wywy

|V (Ao, A1 2 By, By)| = [V (Ao, A1 By, Bs)| = |\/(As, As = By, By)| = B

2,2
wWiWy + wiwWs

‘ \Y (AQ,A3 : BQvB3)‘ = 92

and E is reversible (4wiw3, 2wiwi —wiws, wiwi —wiws) Hadamard difference

set in the group K x Wy x Wi,

Proposition 3.2.9. Let m > 1 be an integer and m = p1ps . .. ps,where
piyi = 1,2,...t are (not necessarily distinct) odd primes.Let K = {1,a,b, ab}
be a klein four group and W = Z}l,l X ... X Z}l,i.Then there exist a reversible

Hadamard difference set E in G = K x W such that
Ey = (1, Eo) U (a, E1) U (b, E2) U (ab, E3)
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where By C W, |Ey| = |E1| = |Es| = #,\Eﬂ = m4;’m2 and 1, # E; for

i=0,1,2 but 1, € Ej.

Proof. We use induction on t.

If t = 1,the the construction following the proof of Lemma 3.2.7 and preceding
Theorem 3.2.8 guarantees the existence of the required difference set.

Assume that the proposition is true when m is a product of (t — 1) primes.
We will prove that the proposition is true when m = pips ... p;, where

pi,t =1,2,...,t are odd primes.

Let wy = pips...p?7 4.

Then by induction hypothesis, there exists a reversible difference set
E1 = (1, Ao) U (a, Al) U (b, AQ) U (ab, Ag)

in K x W1
where Wy = Z}, x ... x Zp Ay C Wy for alli =0,1,2,3

w2—w
[Aof = 4] = 4] = 1

wi + w;
2

|As| =
and 1,, # A; for i =0,1,2 but 1,, € A;

Let wy = p?.Again by the proof Lemma 3.2.7,there a reversible difference set
EQ = (1, Bo) U (a, Bl) U (b, BQ) U (CLb, Bg)

in K x WQ,
where Wy = Z) , B; C W for all i = 0,1,2,3

wz—w
|Bo|l = |B1| = | Ba| = QTQ
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w3 + wey
2

| Bs| =

and 1,, # B; for i =0,1,2 but 1,, € B

Then by Theorem 3.2.8
E = (17V(A07A1 : BOyBl)) U (a7V(A07A1 : 32733))

U(b, 7 (As, As : By, B1)) U (ab, 7(As, As : By, Bs))

is a reversible Hadamard difference set in K x W7 x Wy = K x W and

mt — m2
|V(A0,A1 : B07B1)| = |V(A0,A1 : 32733” = |V(A2,A3 : B07B1)| = T
m* +m?
| vV (A2, A : By, B3)| = 5
Next it is straight forward that
Ly # (Ao, Ay : By, By),
1w # V(A07A1 : BQ7B3)7
1w 7é V(AQ,AS : BO7B1) but ]-w € V(AQ,A?) : BQ,Bg).
Hence the proof. O

Theorem 3.2.10. Let m be a positive odd integer. Then there exist 4m* x 4m*

reqular graphical Hadamard matriz of negative type.

Proof. When m = 1, one can easily demonstrate a 4 x 4 regular graphical
Hadamard matrix of negative type. Therefore we will assume that m is an odd
integer greater than 1.

By propostion 3.2.9 there exist a reversible Hadamard difference set
Ey = (1, Ey) U (a, Ey) U (b, E2) U (ab, E3)

in a group G = K x H where K = {1,a,b,ab} be a klein four group and H is

an abelian group of order m* such that
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4 2

m*—m m* +m?
|Eo| = |Er| = |Es| = — | Bs| = —

and 1y # FE; for i =0,1,2 but 15 € Fs.
Let B/ = (KXH) /E.That is £’ is compliment of E and let D = (ab, lH)E’.Then
D is a reversible (4m?*, 2m* +m? m* + m?) Hadamard difference set in K x H
since
D = (ab, EY) U (b, E)) U (a, E}) U (1, E})
and 1y # E}. We see that 15 # D.
Apply Lemma 3.2.7(with t = m?),
we conclude that there exist 4m* x 4m* regular graphical Hadamard matrix of

negative type. O]

3.3 Seidel Switching

Consider a graphical Hadamard matrix H of order n. Let X be a subset of
{1,...,n}. If we multiply rows and columns indexed by X by —1, we again
obtain a graphical Hadamard matrix. The operation on the corresponding
graph is called Seidel switching. In some cases it is possible to switch a graphical
Hadamard matrix of positive type into one of negative type (and vice versa).
Here we will show that this is indeed the case for the graphical Hadamard
matrices constructed, which leads to graphical Hadamard matrices of negative

type constructed in the previous section.

Lemma 3.3.1. Suppose

Hy  Hp
H:

—HL, H,

1s a reqular graphical Hadamard matriz of order n. Furthermore assume that Hy
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and Hy have row sum 0. Then there exist reqular graphical Hadamard matrix

of order n of positive type, as well as one of negative type.

Proof. Consider

- Hy  —Hi
—HY, H,

Then H’ clearly is again a graphical Hadamard matrix with the same diagonal
as H.

Let [ be the row sum of H.

Then, since H; and Hy have row sum 0, H;2 has row and column sum [. This
implies that H' is regular with row and column sum —[. So the type of H' is

opposite to the type of H. O

3.4 Bounds for the energy

Theorem 3.4.1. If G is a graph with n vertices, m edges and adjacency matrix

A, then

\/2m +n(n — 1)|detAl= < E(G) < V2mn.

Proof. We have
Z )\? =2m
j=1

and start with

@ - ()
= Zn:yw +23 NI (33)

j<k

=2m + n(n — L)AM{|\;|| M|}
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where AM{|);||\x|} indicates the arithemetic mean of the "22_ 2 distinct terms

The geometric mean of the same term is

2

GMA{|A[|[Ael} = (H |>‘j||)‘k’>

j<k

2

n P Sy
= (H Mj’"l)
j=1

(i)

= |det A=

3

where we have taken into account that [[7_, \; = detA.
The lower bound is now a consequence of the fact that the geometric mean of
non negative numbers cannot exceed their arithmetic mean.

The variance of the numbers |z;|,7 =1,2,...,n
var{|\l} = AM{N Y = [AM{ N3]

2
1 < 1«
S NYSE 3N
j=1 j=1

_2m E?

n n?

_2m  (FE\’
n n
and the upper bound follows from the fact that the variance is a non negative

quantity. O]

Corollary 3.4.2. If detA # 0, then E(G) >\/2m+n(n—1) >n.

Also the relation

> Ahe=—m.

i<k
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Then (3.3) becomes,
E* =2m+ ) [\

i<k

>2m 42| > Al

i<k
=2m + 2| —m|
=4m
ie, E > 2¢/m.

If G has isolated vertices,then each isolated vertices results in an eigen value
equal to zero.
Adding isolated vertices of GG will thus change neither m nor E.Consider for a
moment, graphs having m edges and no isolated vertices. The maximum number
of vertices of such graphs 2m,which happens if G = mKs.ieif the graph G
consist of m isolated edges.

For all other graphs n < 2m,we have

V2mn < \/2m(2m) = 2m,
which is combined with the upper bound
E <2M.
Corollary 3.4.3. If G is a graph containing m edges, then
2vm > E < 2m. (3.4)

The bound is sharp: F (G) = 2/m holds if and only if G is complete bipar-
tite graph plus arbitrarily many isolated vertices and E(G) = 2m hold if and
only if G consists of m isolated edges and of arbitrarily ,any isolated vertices.

Thus among lower and upper bounds for £ ,depending solely of m.
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In some cases the lower bound can be improved.That is we have that the great-

est eigen value of a graph cannot be less than the average vertex degree 27"1
2m
— <M<Y N=E
+
4
ie, £ > il (3.5)
n

This estimate is better than the lower bound in (3.4) if

n? - <n(n—1)
— m —_—
4 - 2

Equality (3.5) occurs if and only if G is a complete multipartite graph.
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CONCLUSION

In this dissertation we discuss the maximal energy graphs.Here we provide the
method to improve the upper bound for the energy.Energy of the graph is
solely depends on the vertices and edges of the graph.By doing the project we
came to know more about the energy of different graphs with matrix such as
orthogonal matrix.And resulting the graph having maximal energy when they
are strongly regular graph with certain parameters holds. They are equivalent

to certain hadamard matrices.
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