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ABSTRACT

Let G be a graph, the energy of graphs is the sum of the absolute values

of the eigen value of its adjacency matrix.In this paper we characterize graphs

having the maximum energy among all graphs with n vertices.Also we know that

complete graph having maximum energy.But various families of hyperenergetic

graphs which have an energy larger than the complete graphs.The energy of a

graph on n vertices is atmost n
2

(
1 +
√
n
)

if and only if G is strongly regular

graph with parameters.This enables to find an infinite family of maximal energy

graphs.Using Hadamard matrix, we can find maximum energy graph for every

positive integer.Also providing an upper bound for the energy, which is sharp

for every special values of n and this bound is achieved for all even squares.For

n that is not a square of even number this bound is not sharp, the problem

of maximal energy remains open in general case.The method developed here

provides a way to improve the upper bound for energy for arbitrary n.
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INTRODUCTION

The energy of a graph is a concept that arose in theoretical chemistry.In

mathematics, the energy of graphs is the sum of the absolute values of the

eigen value of its adjacency matrix.All graphs considered in this paper are

finite, simple and undirected.Here we discuss to characterize graphs having the

maximal energy among all graphs with n vertices.

This paper consist of three chapter.First chapter deals with the basic concepts

of the energy of graphs.Second chapter gives the idea of energy of graphs with

orthogonal matrix. And also discuss graphs having energy larger than complete

graphs called hyperenergetic graphs.Third chapter consist of strongly regular

graphs with certain parameters is called maximal energy graphs.This enables

to find an infinite family of maximal energy graph.The maximal energy graphs

are essentially the same objects as certain hadamard matrix.Thus it provides a

upper bound for the energy.
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Chapter 1

PRELIMINARIES

Definition 1.0.1. A graph G consist of a finite non-empty set V of objects

called vertices and a set E of two element subsets of V of objects called edges.The

set V and E are the vertex set and edge set of G respectively.

Example 1.0.2. V = {v1, v2, v3}, E = {(v1, v2), (v2, v3)}

v1

v2

v3

Definition 1.0.3. A simple graph is an unweighted, undirected graph

containing no graph loops or multiple edges.A simple graph may be either

connected or disconnected.

Definition 1.0.4. Let Sn be the family of simple graphs with n vertices v1, v2, . . . , vn.

Adjacency matrix A = A(G) of a graph G ∈ Sn is a square matrix of order n

whose entry in the ith row and jth coloumn is defined as :

aij =


1 if the vertices vi and vj are adjacent.

0 otherwise
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Definition 1.0.5. For a graph G ∈ Sn with adjacency matrix, the characteristic

polynomial of a graph is the characteristic polynomial of the adjacency matrix:

φ
(
G
)

= φ
(
G, λ

)
= det

(
λI − A

)
Its roots are called eigen values.

Definition 1.0.6. Let G be a graph of order n with energy E
(
G
)

=
n∑
i=1

|λi|.The

set {λ1, λ2, . . . , λn} is the spectrum of G and denoted by SpecG.

Definition 1.0.7. A symmetric matrix is a square matrix that is equal to its

transpose,

A is symmetric⇔ A = AT

Example 1.0.8. A=

 1 −1

−1 1


Transpose of A, AT =

 1 −1

−1 1


A = AT

Definition 1.0.9. A square matrix A is said to be orthogonal matrix if the

product of the matrix A and its transpose AT is an identity matrix.ie,

AAT = ATA = I
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Example 1.0.10. A =


cosα 0 sinα

0 1 0

−sinα 0 cosα

 is orthogonal.

A =


cosα 0 sinα

0 1 0

−sinα 0 cosα



AT =


cosα 0 −sinα

0 1 0

sinα 0 cosα



AAT =


cos2α + sin2α 0 −cosαsinα + cosαsinα

0 1 0

−sinαcosα + sinαcosα 0 sin2α + cos2α



=


1 0 1

0 1 0

0 0 1

 = I

Definition 1.0.11. A set of vectors form an orthonormal set if all vectors in

the set are mutually orthogonal and all of unit length.An orthonormal set which

forms a basis is called orthonormal basis.

Definition 1.0.12. A matrix P is called orthogonal if its coloumns form an

orthonormal set and call a matrix A orthogonally diagonalizable if it is

diagonalized by D = P−1AP with P an orthogonal matrix.If A is an n × n

symmetric matrix, then any two eigen vectors that come from distinct eigen

values are orthogonal.

Definition 1.0.13. In the finite dimensional case, a square matrix P is called
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a projection matrix if it is equal to its square,

P 2 = P

Definition 1.0.14. A square matrix P is called orthogonal projection matrix

if P 2 = P = P T for a real matrix and respectively P 2 = P = P ∗ for a complex

matrix, where P T denotes the transpose of P and P ∗ denote adjoint.

Line Graph

A graph with p vertices q edges will referred to as
(
p, q
)

graph. Let G be a(
p, q
)

graph, the line graph denoted L(G), the graph whose vertices are the

edges of G.The number of vertices and edges of L(G) be n and m respectively.

The degree of the vertices of G are δ1, δ2, . . . , δp.

Then

n = q : m =
1

2

p∑
i=1

δ2i − q (1.1)

Let D(G) = diag
(
δ1, δ2, . . . , δp

)
.Also A(G) be the adjacency matrix of G.Then

D(G) + A(G) is a non negative definite matrix and its eigen valus are non

negative.

Let µ1, µ2, . . . , µp be the eigen value of D(G) + A(G), then

p∑
i=1

µi =

p∑
i=1

δi = 2q (1.2)

Definition 1.0.15. A vertex of degree zero is called isolated vertex.

Definition 1.0.16. If the vertices of a graph G have same degree, then G is

called regular graph.
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Chapter 2

ENERGY OF GRAPHS

Let G be a graph, the energy of graphs is the sum of the absolute values of the

eigen value of its adjacency matrix. Here we characterize graphs having the

maximum energy among all graphs with n vertices. We know that complete

graph having maximal energy. But various families of graphs which have an

energy larger than the complete graphs. Here we consider the hyperenergetic

graphs which have energy larger than the complete graphs

2.1 Energy of Graphs

Definition 2.1.1. For a graph G ∈ Sn with adjacency matrix A = A
(
G
)

and

the eigen values λ1,λ2 . . . λm, the energy

E = E
(
G
)

= E
(
A
)

=
m∑
k=1

|λk|

sum of all eigen values of a graph is zero, E = 2E+, where E+ denote the sum

of positive eigen values.
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Example 2.1.2.

v1

v2

v3

Adjacency Matrix Ac3=


0 1 1

1 0 1

1 1 0


Characteristic polynomial=det(λI − A)

λI − A =


λ −1 −1

−1 λ −1

−1 −1 λ


det(λI − A) = λ3 − 3λ− 2

λ = −1,−1, 2

λ1 = −1, λ2 = −1, λ3 = 2

Eigen value is λ1 = −1, λ2 = −1, λ3 = 2

Energy of graph =
n∑
k=1

|λk|

= |λ1|+ |λ2|+ |λ3|

= | − 1|+ | − 1|+ |2|

= 4

Definition 2.1.3. The product of two graphs G1 and G2 denoted by G1 × G2

is the graph with vertex set V
(
G1

)
× V

(
G2

)
such that two vertices(

x1, x2
)
∈ V

(
G1 × G2

)
and

(
y1, y2

)
∈ V

(
G1 × G2

)
are adjacent if and only if(

x1, y1
)
∈ E

(
G1

)
and

(
x2, y2

)
∈ E

(
G2

)

7



Definition 2.1.4. The sum of two graphs G1 and G2 denoted by G1 + G2 is

the graph with vertex set V
(
G1

)
×V

(
G2

)
such that

(
x1, x2

)
∈ V

(
G1 +G2

)
and(

y1, y2
)
∈ V

(
G1 + G2

)
are adjacent if and only if either

(
x1, y1

)
∈ E

(
G1

)
and

x2 = y2 or
(
x2, y2

)
∈ E

(
G2

)
and x1 = y1

Lemma 2.1.5. Let G1 and G2 be two graphs with disjoint vertex sets of order

n1 and n2 respectively.Let λi,i = 1, 2, . . . , n1 and λj,j = 1, 2, , . . . , n2 be the

eigen values of the graph G1 and G2.Then the eigen value of G1×G2 are λiλj,

i = 1, 2, , . . . , n1,j = 1, 2, , . . . , n2

Lemma 2.1.6. Let G1 and G2 be two graphs with disjoint vertex sets of order n1

and n2 respectively.Let λi,i = 1, 2, . . . , n1 and λj,j = 1, 2, , . . . , n2 be the eigen

values of the graph G1 and G2.Then the eigen value of G1 +G2 are λi + λj,

i = 1, 2, , . . . , n1,j = 1, 2, , . . . , n2

Lemma 2.1.7. If an eigen value of a graph is a rational number, then it is an

integer.

Theorem 2.1.8. The energy of a graph cannot be an odd integer

Proof. Consider a graph G and λ1,λ2 . . . λm be positive eigen values.Then the

fact that sum of all eigen values of any graph is equal to zero

E
(
G
)

=
m∑
k=1

|λk| = 2
m∑
k=1

λk

Denote λ1 + λ2 + . . . λm by λ

By lemma 2.1.5 λ is an eigen value of some graph H isomorphic to the sum

of m disjoint copies of the graph G.

Suppose

E
(
G
)

= q

2λ = q

λ = q/2

(2.1)
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If q would be an odd integer,then q/2 would be an non integral rational number

which is contradiction to lemma 2.1.7

Theorem 2.1.9. The energy of a graph cannot be the square root of an odd

integer,

Proof. Consider a graph G and λ1,λ2 . . . λm be positive eigen values.Then the

fact that sum of all eigen values of any graph is equal to zero

E
(
G
)

=
m∑
k=1

|λk| = 2
m∑
k=1

λk

Denote λ1 + λ2 + . . . λm by λ

By lemma 2.1.5, λ is an eigen value of some graph H isomorphic to the sum of

m disjoint copies of the graph G.

By lemma 2.1.6, λ2 is an eigen values of the product of two disjoint copies of

the graph H.

Suppose

E
(
G
)

=
√
q

2λ =
√
q

λ2 = q/4

(2.2)

If q would be an odd integer, then q/2 would be an non integral rational number

which is contradiction to lemma 2.1.7

Corollary 2.1.10. The energy of a graph cannot be the square root of the

double of an integer.

Theorem 2.1.11. Let r and s be integers such that r ≥ 1 and 0 ≤ s ≤ r − 1

and q be an odd integer.Then E
(
G
)
cannot be the form

(
2sq
) 1

r

Proof. For r = 1 and s = 0, Theorem 2.1.7 reduces to Theorem 2.1.8

For r = 2 and s = 0, Theorem 2.1.7 reduces to Theorem 2.1.9

9



Suppose now that E
(
G
)

= q
1
r , q is an odd integer

Then

2λ = q
1
r

λr =
q

2r

(2.3)

If q would not be divisible by 2r,then λr would be an non integral rational

number,which is contradiction to lemma 2.1.7.

Definition 2.1.12. The tensor product of two graphs G1 and G2 is the graph

G1⊗G2 with vertex set V
(
G1

)
× V

(
G2

)
and in which the vertices

(
u1, u2

)
and(

v1, v2
)

are adjacent if and only if u1v1 ∈ E
(
G1

)
and u2v2 ∈ E

(
G2

)
.

Definition 2.1.13. The tensor product A ⊗ B of the r × s matrix A =
(
aij
)

and the t× u matrix B =
(
bij
)

is defined as the rt× su matrix got by replacing

each entry aij of A by the double array aijB.

Lemma 2.1.14. If A is matrix of order r with spectrum {λ1, λ2 . . . λr} and B

is a matrix of order s with spectrum {µ1, µ2 . . . µs} then the spectrum of A⊗B

is {λiµj : 1 ≤ i ≤ r, 1 ≤ j ≤ s}.

Proof. Let X and Y be eigen vectors corresponding to the eigen values λ and

µ of A and B respectively.

Then AX = λX and BY = µY

Now for any four matrices P,Q,R and S,

(
P ⊗Q

)(
R⊗ S

)
= PR⊗QS,whenever the products PR and QS are defined.

Hence
(
A⊗B

)(
X ⊗ Y

)
= AX ⊗BY = λX ⊗ µY = λµ

(
X ⊗ Y

)
. As

(
X ⊗ Y

)
is a non-zero vector, λµ is an eigen value of

(
A⊗B

)
.

Conversely any eigen value of
(
A ⊗ B

)
of the form λiµj for some i and j. To

see this we note that

(
A⊗B

)
=
(
A⊗ Is

)(
Ir ⊗B

)
=
(
Ir ⊗B

)(
A⊗ Is

)
10



In otherwords
(
A⊗B

)
is a product of two commuting matrices.

Now the spectrum of
(
Ir⊗B

)
is the spectrum of B repeated r times and similar

statement applies for the spectrum
(
A⊗ Is

)
.

Now if C and D are two commuting matrices of order t,with spectra α1, α2 . . . αt

and β1.β2 . . . βt respectively, then each of the t eigen values of CD is of the form

αiβj for some i and j.

This proves the result.

Corollary 2.1.15. If G1 and G2 are any two graphs

E
(
G1 ⊗G2

)
= E

(
G1

)
E
(
G1

)
.

Proof. Let the spectra of G1 and G2 be λ1, λ2 . . . λr and µ1, µ2 . . . µs respectively

Then

E
(
G1 ⊗G2

)
=
∑
i,j

|λiµj|

=
r∑
i=1

|λi|
s∑
j=1

|µj|

= E
(
G1

)
E
(
G2

)
(2.4)

Corollary 2.1.16. For any non-trivial graph G, E
(
G
)
> 1

Proof. Suppose E
(
G
)
< 1.Then E

(
G⊗G⊗G . . .⊗G

(
p times

)
E
(
G⊗G⊗G . . .⊗G

)
= E

(
G
)p → 0 as p→∞

Hence the graph G⊗G⊗G . . .⊗G
(
p times

)
→the totally disconnected graph

which is absured.The same arguement show that not all the eigen values of the

graph G can be absolute value less than 1.Consequently if E
(
G
)

= 1,then the

absolute value of all the eigen values of G must be less than 1, a contradiction.
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2.2 Characterization by projectors and

orthogonal matrix

The standard basis for Rn is E1, E2, . . . , En,where Ej is the element of Rn with

1 in the jth place and zeros on all other place.If T : Rn → Rm is a linear

transformation defined by

T
(
Ej
)

=
(
t1j, t2j, . . . tmj

)
=

m∑
k=1

tkjEk

If T : Rn → Rm is a linear transformation and β a base in Rn by [T ]β we denote

the matrix with respect to the basis β.

Let A be a real symmetric matrix of type n × n and ek be orthonormal eigen

vectors for A, that is Aek = λkek, k = 1, ..., n and Ek be the standard basis in

Rn. If Q is a linear operator defined by Q(Ek) = ek, then Q−1AQ = D, where

D = diag
(
λ1, λ2, ..., λn

)
. A real matrix A is symmetric if and only if there is an

orthogonal matrix Q such that Q1AQ = D , where D = diag
(
λ1, λ2, ..., λn

)
.

Also tr
(
A
)

= a11 + . . . + ann =
∑
i

aii, where aij represents the entry on the

ith row and jth column of A. Equivalently, the trace of a matrix is the sum of

its eigenvalues, making it an invariant with respect to a change of basis. Also

tr
(
Q1AQ

)
= tr

(
AQQ−1

)
= trA.

Theorem 2.2.1. Suppose that A is a real symmetric matrix with trA = 0. If

P is an orthogonal projector matrix then E = E
(
A
)
≥ 2tr

(
AP
)
; and

E = 2max.tr
(
AP
)
, where max is taken over all orthogonal projectors P .

Proof. Let
(
λ1, λ2, . . . , λn

)
be eigenvalues of A.

Suppose that λ1 > λ2 > . . . > λp ≥ 0 and λk < 0 for k > p.

Let e =
(
e1, . . . , en

)
be the orthonormal basis of eigenvectors of the matrix

A and P0 be a projector onto the p dimensional space corresponding to non

12



negative eigenvalues.

Then, since [A]e = diag
(
λ1, λ2, . . . , λn

)
and

tr
(
AP0

)
= tr

(
[A]e [P0]e),

it is clear that E+
(
A
)

= tr
(
AP0

)
.

We first verify that for any vector x ∈ IRn

(x,Ax) 6 (x,AP0x) (2.5)

If, x =
n∑
k=1

tkek,

then , Ax =
n∑
k=1

tkλkek,

P0x =
n∑
k=1

tkek and

AP0x =

p∑
k=1

tkλkek.

Hence , (x,Ax) =
n∑
k=1

t2kλk and

(x,AP0x) =

p∑
k=1

t2kλk

therefore, we have (x,Ax) 6 (x,AP0x).

Let α =
(
f1, f2, . . . , fn

)
be an orthonormal basis and

Afk =
n∑
j=1

akj,fj

Then

trA =
n∑
i=1

aii =
n∑
i=1

(
fi, Afi

)
(2.6)

Now let P be an arbitrary orthogonal projection.

Let β1 =
(
b1, . . . , br

)
be an orthonormal basis for ImP and β2 =

(
br+1, . . . , bn

)
an orthonormal basis for KerP .

Then β = β1 ∪ β2 is a basis and

13



P = [P ]

=


Ir 0

0 0

,

where Ir is a unit matrix.

Since Pbi = bi, i = 1, . . . , r and Pbi = 0, i = r + 1, . . . , n,

we find APbi = Abi, i = 1, . . . , r and APbi = 0, i = r + 1, . . . , n.

Then, by
(
2.5
)
and

(
2.6
)
,

tr(AP ) =
r∑
i=1

(
bi, Abi

)
≤

r∑
i=1

(
bi, Ap0bi

)
≤ tr

(
AP0

)
= E+

Lemma 2.2.2. P is an orthogonal projector if and only if P =
(
I + O

)
/2,

where O is an orthogonal symmetric matrix.

Proof. Suppose that O is an orthogonal symmetric matrix and P =
(
I +O

)
/2.

Then P is symmetric,

O = Ot, OOt = I

and therefore O2 = I.

Hence
(
I +O

)(
I +O

)
= I +O +O +O2 = 2

(
I +O

)
,

that is P 2 = P ; thus, since P is symmetric, we conclude that P is an orthogonal

projector.

Conversely, if P is an orthogonal projector and O = 2P − I, then

O2 = (2P − I)2 = 4P − 4P + I = I, hence O2 = I; moreover, since P is

14



symmetric, O is symmetric, and hence Ot = O = O−1, that is O an orthogonal

matrix.

Theorem 2.2.3. Let G be a simple graph with n vertices and Os
(
n
)

be the

family of orthogonal symmetric matrices of type n× n. Then

E
(
G
)
≤ n

2
+max

1

2
|O|1 ≤

n

2
+

1

2
n

3
2 ,

where max is taken over all O ∈ Os
(
n
)
.

It is clear that

maxE
(
G
)
≤ n

2
+max

1

2
|O|1 ≤

n

2
+

1

2
n

3
2 ,

where max is taken over all G ∈ Sn.

Proof. If On is an orthogonal symmetric matrix with |oij| =
√

1
n
, oii =

√
1
n

and∑
oij = n, then On is extremal.

Step 1: If O = [oij] is an orthogonal matrix, then |O|1 ≤ n
3
2 . Since O = [oij] is

an orthogonal matrix
∑
i

o2ik = 1, and
∑
i,j

|oij|2 = n.

Hence
(∑
i,j

|oij|
)2 ≤ n2

∑
i,j

|oij|2 = n3.

The equality holds if and only if |oij| = cn= constant,

i.e.,if and only if |oij| = 1/
√
n.

Step 2 : If O = [oij] is an orthogonal matrix, then

∑
o+ij ≤

n

2
+

1

2
|o|1 (2.7)

If P =
(
I +O

)
/2 is a projector and v0 =

(
1, . . . , 1

)
,

then |Pv0|2 =
∑
pij = n

2
+ 1

2

∑
oij.

Since |Pv0|2 ≤ |v0|2 = n,

we find
∑
oij ≤ n.

Hence, using
∑
oij = 1

2

(∑
|oij|+ oij

)
, we find

(
2.7
)
.
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If A is the symmetric
(
0, 1
)
-adjacency matrix of G and AP = [bij],

then bij =
∑
k

aikpjk and therefore tr
(
AP
)

=
∑
i

bii =
n∑

i,k=1

aikpik.

Hence, since A is the symmetric
(
0, 1
)
-adjacency matrix, tr

(
AP
)
≤
∑
i 6=j

p+ij.

By Lemma 2.2.2, P is an orthogonal projector if and only if P =
(
I + O

)
/2,

where O is an orthogonal symmetric matrix.

If i 6= j, pij = oij/2,

tr(
(
AP
)
≤ 1

2

∑
i 6=j

o+ij ≤
1

4

∑
i 6=j

oij + |oij|

≤n
4

+
1

4
|o|1

≤n
4

+
1

4
n

3
2

and therefore

maxE
(
G
)
≤ n

2
+max

1

2
|O|1 ≤

n

2
+

1

2
n

3
2 .

Theorem 2.2.4. For a graph G ∈ Sn, E
(
G
)

= max
∑

i 6=j,
(
i,j
)
∈G

oij, where

max is taken over all orthogonal symmetric matrices O = [oij] . There is a

maximal orthogonal symmetric matrix such that E
(
G
)

=
∑

i 6=j,
(
i,j
)
∈G

oij

Proof. SinceOs
(
n
)

is compact, there is a maximal orthogonal symmetric matrix

O = [oij] such that E
(
G
)

=
∑

i 6=j,
(
i,j
)
∈G

oij

16



2.3 Application

Let us denote

o+ =
∑

j,i6=j,
(
i,j
)
∈G

o+ij

and let dk denote the index of a vertex vk ∈ G.

Proposition 2.3.1. Let m be number of edges.Then

E
(
G
)
≤
∑
k∈G

√
dk ≤

√
2mn

.

Proof. By Theorem 2.2.4, there is a maximal orthogonal symmetric matrix

O = [oij] such that E
(
G
)

=
∑

i 6=j,
(
i,j
)
∈G

oij.Let

o+ =
∑

j,i6=j,
(
i,j
)
∈G

o+ij

By Cauchy Schwarz inequality, (o+)2 ≤ di
∑

j,i6=j,
(
i,j
)
∈G

(o+ij)
2 ≤ di. Hence

o+ ≤
√
di and E

(
G
)
≤
∑
i

o+i ≤
∑
i

√
di. Since

∑
k

dk = 2m.

We get the inequality,

E
(
G
)
≤
√

2mn

Let En = maxG∈SnE
(
G
)
. We say that an orthogonal symmetric matrix

O = [oij] is extremal if En =
∑
i 6=j

o+ij and for G ∈ Sn that it is an extremal energy

graph if En = E
(
G
)
.

For a given real matrix M = [mij], we define a graph G = GM by (vi, vj) ∈ G

if and only if mij > 0. Since E
(
G,O

)
=

∑
i 6=j,(i,j)∈G

oij ≤
∑
i 6=j

o+ij and

E
(
GO, O

)
=
∑
i 6=j

o+ij , by Theorem 2.2.4, we get:

17



Proposition 2.3.2. For every integer n ≥ 1,

En = maxO∈OS(n)

∑
i 6=j

o+ij =
1

2
maxO∈OS(n)

(∑
i 6=j

oij + |oij|
)

and there is an orthogonal symmetric extremal matrix O = [oij] and an extremal

energy graph G ∈ Sn.

Since O ∈ OS(n) if and only if −O ∈ OS(n) , we have |
∑
oij| ≤ n for

O ∈ OS(n)

Proposition 2.3.3. Suppose that a matrix O = [oij] of type n × n is an or-

thogonal symmetric extremal matrix. Then En = E1
n := 1

2
+ 3

2
n

3
2 if and only if

(1)
∑
j

oij = 1

(2)|oij| = 1/
√
n

(3)oij ≤ 0

Proof. Let P =
(
I + O

)
/2. If En = E1

n , then
∑
oij = n. Hence |pv|2 = n

and therefore Pv = v; so we get (a). The condition (a) can be replaced with∑
oij = n.

We can verify that En = 1
2

+ 3
2
n

3
2 for n = 4k using orthogonal matrices.

We construct orthogonal matrices On, n = 4k, of type n × n with elements

oij = ±1/
√
n by induction (we first construct A4k):

A3 =



−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1


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We also need B4:

B3 =



1 1 1 −1

1 1 −1 1

1 −1 1 1

−1 1 1 1


Using the tensor product we define A4k+1 = B4 ⊗ A4k :

A4k+1 =



A4k A4k A4k −A4k

A4k A4k −A4k A4k

A4k −A4k A4k A4k

−A4k A4k A4k A4k


Let On = 1/

√
nAn. Using Proposition 2.2.3, we can verify that the matrices On

are extremal for n = 4k.For n = 4 the complete graph is extremal, E4 = 2.3 = 6;

the matrix O4 = 1
2
A4 is extremal. For n = 42 = 16, the matrix O16 = 1

4
B4⊗A4

is extremal: |O+
16| =

∑
i 6=j

o+ij = 12.12/4 + 44/4 = 36 + 4 = 40 = E16;

|O16|/2 = 16
√

16/2 = 32

2.4 Hyperenergetic Graphs

The energy of a graph increases with the increase of the number of vertices and

edges. Among n vertex graphs,the complete graph Kn has maximal energy. It

was soon shown that there exist graphs whose energy exceeds E
(
Kn

)
and

E
(
Kn

)
= 2n− 2

Definition 2.4.1. A graph G,such that E
(
Kn

)
> 2n− 2 is said to be

hyperenergetic.

Proposition 2.4.2. Let G be
(
p, q
)

graph with q ≥ 2p.The line graph of the

complete graph on n vertices is hyperenergetic if n ≥ 5.
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Proof. The complete graph Kn is regular of degree n− 1.The line graph of Kn

has n
(
n − 1

)
/2 vertices.Then the characterstic polynomial of a regular graph

R and of its line graph L
(
G
)

are related as

φ
(
L
(
R
)
, x
)

=
(
x+ 2

)n(r−2)/2
φ
(
R, x− r + 2

)
where n and r the number of vertices and degree of R.

Then

φ
(
Kn, x

)
=
(
x− n+ 1

)(
x+ 1

)n−1
.

we calculate,

E
(
L
(
Kn

))
= 2n2 − 6n

which for n ≥ 5 is greater than

E
(
kn(n−1)/2

)
= n2 − n− 2.

Corollary 2.4.3. It is possible to construct hyperenergetic graphs with n

vertices for every n ≥ 9.

Proof. Let G be
(
p, q
)

graph with q ≥ 2p.

Then L
(
G
)

is hyperenergetic
(
n,m

)
graph’

Using Cauchy Schwarz Inequality,

( N∑
i=1

aibi

)2
≤

N∑
i=1

a2i

N∑
i=1

b2i

Choosing N = p, ai = δi and bi = 1.
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Using (1.1) and (1.2) We arrive at

m =
1

2

p∑
i=1

δ2i − q

≥ 1

2

(
2q
)2
p
− q

≥ 3q

= 3n

Since L
(
G
)

has more than 2n edges.By proposition 2.4.2 can be applied to

it.

Corollary 2.4.4. Let p ≥ 5, let G be a
(
p, q
)

graph.If q ≥ 2p, then L2
(
G
)

is

hyperenergetic.

Corollary 2.4.5. Let p ≥ 5, let G be a
(
p, q
)

graph.If q ≥ 2p then all iterated

line graphs Li
(
G
)
, i = 2, 3, . . . , are hyperenergetic.
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Chapter 3

Maximal Energy Graphs

If G is a graph on n vertices,then E
(
G
)
≤ n

2

(
1 +
√
n
)

must hold and that this

bound is sharp if and only if G is strongly regular graph with parameters given

by certain functions of n. Strongly regular graphs with these parameters have

been called maximal energy graphs.This enables us to find an infinite family of

maximal energy graphs.Using result on Hadamard difference sets,we construct

regular graphical Hadamard matrices of negative type of order 4m4 for every

integer m.If m > 1,such a Hadamard matrix is equivalent to a strongly regular

graph with parameters
(
4m4, 2m4 +m2,m4 +m2,m4 +m2

)
.

3.1 Maximal Energy Graphs

Definition 3.1.1. A strongly regular graph (srg) with parameters
(
n, k, λ, µ

)
is a graph with n vertices that is regular of valency k

(
1 ≤ k ≤ n− 2

)
and that

has the following properties:

◦ For any two adjacent vertices x, y there are exactly λ vertices adjacent to both

x and y.

◦ For any two non adjacent vertices x, y there are exactly µ vertices adjacent
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to both x and y.

If µ = 0, then G is a disjoint union of complete graphs, whereas, if µ ≥ 1

and G is non-complete, then the eigenvalues of G are k (the trivial eigenvalue)

and the roots r, s of the quadratic equation

x2 + µ− λx+ µ− k = 0 (3.1)

The eigenvalue k has multiplicity one, whereas the multiplicities mr of r and

ms of s can be calculated by solving the simultaneous equations

mr +ms = n− 1, k +mrr +mss = 0

Theorem 3.1.2. If 2m ≥ n and G is a graph on n vertices with m edges, then

the inequality

E
(
G
)
≤ 2m

n
+

√
(n− 1)[2m−

(2m

n

)2
] (3.2)

holds. Moreover, equality holds if and only if G is either n
2
K2, Kn, or a non-

complete connected strongly regular graph with two non-trivial eigenvalues both

with absolute value
√(

2m−
(
2m
n

)2)
/(n− 1).

Proof. Suppose that λ1 ≥ λ2 ≥ . . . ≥ λn are the eigen values of G(which are

real symmetric).Then we have

λ1 ≥
2m

n
.

Moreover,since
n∑
i=1

λ2i = 2m

must hold.We have
n∑
i=2

λ2i = 2m− λ21
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Using this together with the Cauchy Schwarz inequality, applied to the vectors(
|λ1|, |λ2|, . . . , |λn|

)
and

(
1, 1, . . . , 1

)
with n−1 entries, we obtain the inequality

n∑
i=2

|λi| ≤
√

(n− 1)[2m− λ21]

Thus we must have

E
(
G
)
≤ λ1 +

√
(n− 1)[2m− λ21]

Now the function F (x) : x+
√

(n− 1)2[2m− x2] decreases the interval√
2m
n
< x ≤

√
2m in view of 2m ≥ n.

We see that
√

2m
n
≤ 2m

n
≤ λ1 must hold and hence F

(
λ1
)
≤ F

(
2m
n

)
must hold.

From this,

E
(
G
)
≤ 2m

n
+

√
(n− 1)[2m−

(2m

n

)2
] holds.

As the eigen value for n
2
K2 are ±1(both with multiplicity n

2
) and the eigen

values of Kn are n− 1 and −1.

That is G is one of the graphs given in the second part of the theorem, then

equality must hold in (3.2).

Conversely, if equality holds in (3.2), then by the previous discussion on the

function F (x) we see that λ1 = 2m
n

must hold.

Therefore it follows that G is regular with valence 2m
n

. Now, since equality must

also hold in the Cauchy Schwarz inequality given above, we have

|λi| ≤
√(

2m−
(2m

n

)2)
/(n− 1), for 2 ≤ i ≤ n

Hence, we are reduced to three possibilities:

1) either G has two eigenvalues with equal absolute values, in which case G

must equal n
2
K2.

2) G has two eigenvalues with distinct absolute values, in which case G must

equal Kn.
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3) G has three eigenvalues with distinct absolute values equal to 2m
n

or√(
2m−

(
2m
n

)2)
/(n− 1), in which case G must be a non-complete connected

strongly regular graph as required.

Theorem 3.1.3. If 2m ≤ n and G is a graph on n vertices with m edges, then

the inequality

E
(
G
)
≤ 2m

holds. Moreover, equality holds if and only if G is disjoint union of edges and

isolated vertices.

Proof. Since 2m ≤ n, it follows that G must have atleast n − 2m isolated

vertices.

Consider the graph G′ that is obtained from G by removing n − 2m isolated

vertices. Then G′ has 2m vertices and m edges.

Thus we may apply Theorem 3.1.2 to immediately see that E
(
G′
)
≤ 2m must

hold, with equality holding if and only if G′ is the disjoint union of edges. The

proof of the theorem now immediately follows.

Theorem 3.1.4. Let G be a graph of n vertices.Then

E
(
G
)
≤ n

2

(
1 +
√
n
)

holds with equality holding if and only if G is strongly regular graph with pa-

rameters
(
n,
(
n+
√
n
)
/2,
(
n+ 2

√
n
)
/4,
(
n+
√
n
)
/4
)
.

Proof. Suppose G be a graph of n vertices and m edges.

If 2m ≥ n,then the equality

E ≤ 2m

n
+

√
(n− 1)[2m− 2m

n

2

]
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and is considered as a function of m is maximized when m = n2+n
√
n

4

substitute the value of m to (3.2) we get

E
(
G
)
≤ n

2

(
1 +
√
n
)

Moreover,it follows by Theorem 3.1.2 and (3.1) that equality holds in

E
(
G
)
≤ 2m

n
+
√

(n− 1)[2m− 2m
n

2
] if and only if G is a strongly regular graph

with parameters
(
n,
(
n+
√
n
)
/2,
(
n+ 2

√
n
)
/4,
(
n+
√
n
)
/4
)
.

If 2m ≤ n, then by Theorem 3.1.4, E
(
G
)
≤ n

Therefore the proof of the theorem follows immediately.

We note that an strongly regular graph with the parameters(
n,
(
n+
√
n
)
/2,
(
n+ 2

√
n
)
/4,
(
n+ 2

√
n
)
/4
)

will be called a maximal energy

of order n. The compliment of a maximal energy graph is a strongly regular

graph with parameters
(
n,
(
n−
√
n
)
/2,
(
n− 2

√
n
)
/4,
(
n− 2

√
n
)
/4
)
. However

the strong regular graph doesnot have maximal energy.Consider a family of

maximal energy graph pf order 4k, maximal energy graph of order n exist for

all even squares.To support this conjecture the case n = 4m4with m even.In

this chapter we show maximal energy graph of order 4m4 also exist for all odd

integers.

Theorem 3.1.5. A maximal energy graph of order 4m4 exists for every positive

integer m

3.2 Regular Graphical Hadamard Matrix

A Hadamard matrix of order n is n× n matrix H with entries ±1 such that

HHT = nIn,where In is the identity matrix of order n.
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we will see below that maximum energy graphs are essentially the same objects

as certain special Hadamard matrix.

Definition 3.2.1. A Hadamard matrix is said to be graphical if it is symmetric

and it has constant diagonal.

Note that if H is a graphical Hadamard matrix of order n with δ on the

diagonal and J is the n×n all ones matrix then A = 1
2

(
J−δH

)
is the adjacency

,matrix of a graph of n vertices.

Definition 3.2.2. A Hadamard matrix is said to be regular if all its row and

column sums are constant.

Let H be a Hadamard matrix of order n. If H is regular, then there exists

an integer l such that H1 = HT1 = l1. Since HHT = nIn, we have l21 = n1.

Hence l = ±
√
n.

Definition 3.2.3. Let H be a regular graphical Hadamard matrix with row

sum l and δ on the diagonal. We say that H is of positive type, or type +1

(respectively, negative type, or type −1) if δl > 0 (respectively, δl < 0).

It has been observed that if H is a regular graphical Hadamard matrix with

δ on its diagonal, of type ε,then A = 1
2

(
J − δH

)
is the adjacency matrix of an

strongly regular graph with parameters

(
n,
(
n− ε

√
n
)
/2,
(
n− 2ε

√
n
)
/4,
(
n− 2ε

√
n
)
/4
)
.

Conversely, if A is the adjacency matrix of an strongly regular graph with this

parameters then J − 2A is a regular graphical Hadamard matrix of type ε.

Thus a maximum energy graph is essentially the same as a regular graphical

Hadamard matrix of negative type.
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Lemma 3.2.4. If there exist a regular graphical Hadamard matrix of order n of

positive, or negative type, then there exist regular graphical Hadamard matrices

of order 4n of both types.

In particular, we can make regular graphical Hadamard matrices of order

4k of any type for all positive integers k. Hence, for n a power of 4, there exist

strongly regular graphs with parameters for ε = 1 and for ε = −1. So we can

conclude that maximal energy graphs exist for all orders n = 4k.

Theorem 3.2.5. For every positive integer m there exists a regular graphical

Hadamard matrix of order 4m4 of positive, as well as of negative type.

In the Seidel Switching Section, we show how in this case the negative type

can be obtained from the positive type(and vice versa).

Definition 3.2.6. Let G be a finite group of order n. A k-element subset D of

G is called a (n, k, λ) difference set in G if the list of “differences” d1d
−1
2 ,

d1, d2 ∈ D, d1 6= d2, represents each non-identity element in G exactly λ times.

Using multiplicative notation for the group operation, D is a (n, k, λ) difference

set in G if and only if it satisfies the following equation in Z[G]:

DD(−1) = (K − λ)1G + λG

where D =
∑
d∈D

d, D(−1) =
∑
d∈D

d(−1) and 1G is the identity element of G.A

subset D of G is called reversible if D(−1) = D. The difference sets considered

in this note have parameters

(n, k, λ) = (4n2, 2n2 ± n, n2 ± n)

These difference sets are called Hadamard difference sets, since their

(1,−1)-incidence matrices are Hadamard matrices.
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Lemma 3.2.7. Let t be a positive integer and let D be a reversible

(4t2, 2t2 + t, t2 + t) Hadamard difference set in a group G of order 4t2 such that

1G 6= D. Then there exists a 4t2 × 4t2 regular graphical Hadamard matrix of

negative type.

Proof. Let Cay(G,D) be the Cayley graph with vertex set G and connection

set D. That is, the vertex set of Cay(G,D) is G, two vertices x, y ∈ G are

connected by an edge if and only if xy−1 ∈ D. Let A be the adjacency matrix

of Cay(G,D). Since 1G 6= D, the diagonal entries of A are all zeros. Also A is

symmetric because D is reversible. Since D is a Hadamard difference set, we

have

A2 = t2I + (t2 + t)J

Now let H = J − 2A. Then H is symmetric.Since A is the diagonal entries

of H are all ones (i.e., δ = 1). The row sums of H are constant, and they are

equal to l = 4t2 − 2(2t2 − 1) = −2t. Hence

δl = −2t < 0

Furthermore, from A2 = t2I + (t2 + t)J , we have

H2 = 4t2I

Therefore,H is regular graphical Hadamard matrix of negative type.

Theorem 3.2.8. Let K = {1, a, b, ab} be a klein four group.Let

E1 = (1, A0) ∪ (a,A1) ∪ (b, A2) ∪ (ab, A3)

and

E2 = (1, B0) ∪ (a,B1) ∪ (b, B2) ∪ (ab, B3)
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be reversible Hadamard difference sets in groups K ×W1 and K ×W2 respec-

tively, where |W1| = w2
1 and |W2| = w2

2, w1 and w2 are odd Ai ⊆ W1 and

Bi ⊆ W2 and

|A0| = |A1| = |A2| =
w2

1 − w1

2

|B0| = |B1| = |B2| =
w2

2 − w2

2

|A3| =
w2

1 + w1

2

|B3| =
w2

2 + w2

2

Let E =
(
1,5(A0, A1 : B0, B1)

)
∪
(
a,5(A0, A1 : B2, B3)

)
∪
(
b,5(A2, A3 : B0, B1)

)
∪
(
ab,5(A2, A3 : B2, B3)

)
Then

|5(A0, A1 : B0, B1)| = |5(A0, A1 : B2, B3)| = |5(A2, A3 : B0, B1)| =
w2

1w
2
2 − w1w2

2

| 5 (A2, A3 : B2, B3)| =
w2

1w
2
2 + w1w2

2

and E is reversible
(
4w2

1w
2
2, 2w2

1w
2
2−w1w2, w

2
1w

2
2−w1w2

)
Hadamard difference

set in the group K ×W1 ×W2.

Proposition 3.2.9. Let m > 1 be an integer and m = p1p2 . . . pt,where

pi, i = 1, 2, . . . t are (not necessarily distinct) odd primes.Let K = {1, a, b, ab}

be a klein four group and W = Z4
P1
× . . . × Z4

Pi
.Then there exist a reversible

Hadamard difference set E in G = K ×W such that

E1 = (1, E0) ∪ (a,E1) ∪ (b, E2) ∪ (ab, E3)
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where E1 ⊂ W ,|E0| = |E1| = |E2| = m4−m2

2
, |E3| = m4+m2

2
and 1w 6= Ei for

i = 0, 1, 2 but 1w ∈ E3.

Proof. We use induction on t.

If t = 1,the the construction following the proof of Lemma 3.2.7 and preceding

Theorem 3.2.8 guarantees the existence of the required difference set.

Assume that the proposition is true when m is a product of (t− 1) primes.

We will prove that the proposition is true when m = p1p2 . . . pt, where

pi, i = 1, 2, . . . , t are odd primes.

Let w1 = p21p
2
2 . . . p

2
t−1.

Then by induction hypothesis, there exists a reversible difference set

E1 = (1, A0) ∪ (a,A1) ∪ (b, A2) ∪ (ab, A3)

in K ×W1

where W1 = Z4
P1
× . . .× Z4

Pi
,Ai ⊂ W1 for all i = 0, 1, 2, 3

|A0| = |A1| = |A2| =
w2

1 − w1

2

|A3| =
w2

1 + w1

2

and 1w1 6= Ai for i = 0, 1, 2 but 1w1 ∈ A3

Let w2 = p2t .Again by the proof Lemma 3.2.7,there a reversible difference set

E2 = (1, B0) ∪ (a,B1) ∪ (b, B2) ∪ (ab, B3)

in K ×W2,

where W2 = Z4
pt , Bi ⊂ W2 for all i = 0, 1, 2, 3

|B0| = |B1| = |B2| =
w2

2 − w2

2
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|B3| =
w2

2 + w2

2

and 1w2 6= Bi for i = 0, 1, 2 but 1w2 ∈ B3

Then by Theorem 3.2.8

E =
(
1,5(A0, A1 : B0, B1)

)
∪
(
a,5(A0, A1 : B2, B3)

)
∪
(
b,5(A2, A3 : B0, B1)

)
∪
(
ab,5(A2, A3 : B2, B3)

)
is a reversible Hadamard difference set in K ×W1 ×W2 = K ×W and

|5(A0, A1 : B0, B1)| = |5(A0, A1 : B2, B3)| = |5(A2, A3 : B0, B1)| =
m4 −m2

2

| 5 (A2, A3 : B2, B3)| =
m4 +m2

2
.

Next it is straight forward that

1w 6= 5(A0, A1 : B0, B1),

1w 6= 5(A0, A1 : B2, B3),

1w 6= 5(A2, A3 : B0, B1) but 1w ∈ 5(A2, A3 : B2, B3).

Hence the proof.

Theorem 3.2.10. Let m be a positive odd integer.Then there exist 4m4× 4m4

regular graphical Hadamard matrix of negative type.

Proof. When m = 1, one can easily demonstrate a 4 × 4 regular graphical

Hadamard matrix of negative type. Therefore we will assume that m is an odd

integer greater than 1.

By propostion 3.2.9 there exist a reversible Hadamard difference set

E1 = (1, E0) ∪ (a,E1) ∪ (b, E2) ∪ (ab, E3)

in a group G = K ×H where K = {1, a, b, ab} be a klein four group and H is

an abelian group of order m4 such that
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|E0| = |E1| = |E2| =
m4 −m2

2
, |E3| =

m4 +m2

2

and 1H 6= Ei for i = 0, 1, 2 but 1H ∈ E3.

Let E ′ =
(
K×H

)
/E.That is E ′ is compliment ofE,and letD =

(
ab, 1H

)
E ′.Then

D is a reversible (4m4, 2m4 +m2,m4 +m2) Hadamard difference set in K ×H

since

D = (ab, E ′0) ∪ (b, E ′1) ∪ (a,E ′2) ∪ (1, E ′3)

and 1H 6= E ′3.We see that 1G 6= D.

Apply Lemma 3.2.7(with t = m2),

we conclude that there exist 4m4× 4m4 regular graphical Hadamard matrix of

negative type.

3.3 Seidel Switching

Consider a graphical Hadamard matrix H of order n. Let X be a subset of

{1, . . . , n}. If we multiply rows and columns indexed by X by −1, we again

obtain a graphical Hadamard matrix. The operation on the corresponding

graph is called Seidel switching. In some cases it is possible to switch a graphical

Hadamard matrix of positive type into one of negative type (and vice versa).

Here we will show that this is indeed the case for the graphical Hadamard

matrices constructed, which leads to graphical Hadamard matrices of negative

type constructed in the previous section.

Lemma 3.3.1. Suppose

H =

 H1 H12

−HT
12 H2


is a regular graphical Hadamard matrix of order n. Furthermore assume that H1
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and H2 have row sum 0. Then there exist regular graphical Hadamard matrix

of order n of positive type, as well as one of negative type.

Proof. Consider

H ′ =

 H1 −H12

−HT
12 H2


Then H ′ clearly is again a graphical Hadamard matrix with the same diagonal

as H.

Let l be the row sum of H.

Then, since H1 and H2 have row sum 0, H12 has row and column sum l. This

implies that H ′ is regular with row and column sum −l. So the type of H ′ is

opposite to the type of H.

3.4 Bounds for the energy

Theorem 3.4.1. If G is a graph with n vertices, m edges and adjacency matrix

A,then √
2m+ n(n− 1)|detA| 2n ≤ E

(
G
)
≤
√

2mn.

Proof. We have
n∑
j=1

λ2j = 2m

and start with [
E
(
G
)]2

=

(
n∑
j=1

|λj|2
)

=
n∑
j=1

|λj|2 + 2
∑
j<k

|λj||λk|

= 2m+ n(n− 1)AM{|λj||λk|}

(3.3)
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where AM{|λj||λk|} indicates the arithemetic mean of the n2−n
2

distinct terms

|λj||λk|, j < k.

The geometric mean of the same term is

GM{|λj||λk|} =

(∏
j<k

|λj||λk|

) 2
n2−n

=

(
n∏
j=1

|λj|n−1
) 2

n2−n

=

(
n∏
j=1

|λj|n−1
) 2

n

= |detA|
2
n

where we have taken into account that
∏n

j=1 λj = detA.

The lower bound is now a consequence of the fact that the geometric mean of

non negative numbers cannot exceed their arithmetic mean.

The variance of the numbers |xj|, j = 1, 2, . . . , n

var{|λj|} = AM{|λj|2} − [AM{|λj|}]2

=
1

n

n∑
j=1

|λj|2 −

[
1

n

n∑
j=1

|λj|

]2

=
2m

n
− E2

n2

=
2m

n
−
(
E

n

)2

and the upper bound follows from the fact that the variance is a non negative

quantity.

Corollary 3.4.2. If detA 6= 0, then E
(
G
)
≥
√

2m+ n(n− 1) ≥ n.

Also the relation ∑
j<k

λjλk = −m.
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Then (3.3) becomes,

E2 = 2m+
∑
j<k

|λj||λk|

≥ 2m+ 2|
∑
j<k

λjλk|

= 2m+ 2| −m|

= 4m

ie,E ≥ 2
√
m.

If G has isolated vertices,then each isolated vertices results in an eigen value

equal to zero.

Adding isolated vertices of G will thus change neither m nor E.Consider for a

moment, graphs having m edges and no isolated vertices.The maximum number

of vertices of such graphs 2m,which happens if G = mK2.ie,if the graph G

consist of m isolated edges.

For all other graphs n < 2m,we have

√
2mn ≤

√
2m(2m) = 2m,

which is combined with the upper bound

E ≤ 2M.

Corollary 3.4.3. If G is a graph containing m edges, then

2
√
m ≥ E ≤ 2m. (3.4)

The bound is sharp: E
(
G
)

= 2
√
m holds if and only if G is complete bipar-

tite graph plus arbitrarily many isolated vertices and E
(
G
)

= 2m hold if and

only if G consists of m isolated edges and of arbitrarily ,any isolated vertices.

Thus among lower and upper bounds for E ,depending solely of m.
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In some cases the lower bound can be improved.That is we have that the great-

est eigen value of a graph cannot be less than the average vertex degree 2m
n

2m

n
≤ λ1 ≤

∑
+

λj =
1

2
E

ie, E ≥ 4m

n
(3.5)

This estimate is better than the lower bound in (3.4) if

n2

4
< m ≤ n(n− 1)

2
.

Equality (3.5) occurs if and only if G is a complete multipartite graph.
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CONCLUSION

In this dissertation we discuss the maximal energy graphs.Here we provide the

method to improve the upper bound for the energy.Energy of the graph is

solely depends on the vertices and edges of the graph.By doing the project we

came to know more about the energy of different graphs with matrix such as

orthogonal matrix.And resulting the graph having maximal energy when they

are strongly regular graph with certain parameters holds.They are equivalent

to certain hadamard matrices.
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