

University of Kerala

Discipline	STATISTICS								
Course Code	UK2DSCSTA109								
Course Title	STANDARD DISTI	STANDARD DISTRIBUTIONS, CORRELATION AND							
	REGRESSION								
Type of Course	DSC								
Semester	II	II							
Academic	100 - 199								
Level									
Course Details	Credit Lecture Tutorial Practical Total								
	per week per week per week Hours/Week								
	4	3 hours	-	2 hours	5				
Pre-requisites									

COURSE OUTCOMES

Up on	Completion of the course, students should be	Cognitive level	PSO addressed
CO1	Calculate Pearson's Coefficient of Correlation, Spearman's Rank Correlation Coefficient and interpret the results, Identify regression lines for data sets	Create	PSO 1,2,3,4,5
CO2	Derive marginal and conditional distributions of Bivariate Random Variables. Check for independence of random variables	Evaluate	PSO 1,2, 3
CO3	Evaluate expectation, moments, moment generating functions.	Evaluate	PSO 1,2,3
CO4	Explain Discrete Standard Distributions and apply discrete standard distributions in practical situations, Fit binomial and Poisson distributions to data sets	Create	PSO 1,2,3,4
CO5	Explain Normal and Standard normal distributions, their properties, practical applications and evaluate normal probabilities	Evaluate	PSO 1,2,3,4

COURSE CONTENT

Module	Content	Hrs
Ι	Bivariate data Analysis	
	Bivariate data Analysis: Scatter Diagram, Karl Pearson's Coefficient of	
	Correlation, Spearman's Rank Correlation Coefficient, Properties of Correlation	
	(statements and numerical problems only).	
	Regression: Definition, Two regression lines, Fitting of Regression Lines and	
	predictions, Coefficient of Determination	
II	Mathematical Expectation and Bivariate random variables	
	Mathematical Expectation: Expectation of a single random variable and its	
	properties (without proof), raw moments and central moments, relation between	
	raw moments and central moments (without proof), moment generating function	
	and characteristic function- definition, properties (without proof) and problems.	
	Bivariate random variables: Bivariate random variables – Joint Distribution of	
	two random variables, properties (without proof), marginal and conditional	
	distributions, independence of two random variables.	
	Addition and multiplication theorems of Expectation (two random variables),	
	Correlation (Statements and problems only)	
III	Discrete Standard distributions	15
	Discrete Standard distributions – Uniform, Binomial, Poisson – Moments,	
	moment generating function, characteristic function, problems, additive property	
	(Binomial and Poisson), Poisson as limiting form of Binomial, fitting of	
	Binomial and Poisson distribution. (Statements and numerical problems only)	
IV	Normal distribution	10
	Normal distribution – Normal distribution and its uses, properties, mean, rth	
	central moment, moment generating function, characteristic function, Standard	
	Normal distribution- Definition, standard normal curve, numerical problems	
	using standard normal table, convergence of Binomial and Poisson to Normal	
	(Statements and numerical problems only)	
V	Practicum	30
	Practical based on Modules I. III & IV. Practical is to be done using R package	

PRACTICAL/LABWORK List of Practical worksheet

- 1. Problems on Correlation
- 2. Problems on Curve fitting
- 3. Problems on regression lines
- 4. Fitting of Binomial and Poisson distribution
- 5. Problems based on Binomial, Poisson Normal distribution

REFERENCES

- 1. Gupta, S. C., and Kapoor, V. K. (1994). Fundamentals of Mathematical Statistics. Sultan Chand & Sons. New Delhi.
- 2. Mukhopadhyay, P. (1996). Mathematical Statistics. New Central Book Agency (P) Ltd, Calcutta.
- 3. Pitman, J. (1993). Probability. Narosa Publishing House, New Delhi.
- 4. Rohatgi V. K. (1993). An Introduction to Probability Theory and Mathematical Statistics. Wiley Eastern, New Delhi.

5. Purohit, S. G., Deshmukh, S.R., & Gore, S. D. (2008). Statistics using R. Alpha Science International, United Kingdom.

Name of the Course: STANDARD DISTRIBUTIONS, CORRELATION AND REGRESSION

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	CO	PO/PSO	Cognitive Level	Knowledg e Category	Lecture (L)/Tutori al (T)	Practical (P)
CO1	Calculate Pearson's Coefficient of Correlation, Spearman's Rank Correlation Coefficient and interpret the results, Identify regression lines for data sets	PO 1,2,3,4,6, 7	Create		L	Р
CO2	Derive marginal and conditional distributions of Bivariate Random Variables. Check for independence of random variables	PO1,2,7	Evaluate	F, C	L	
CO3	Evaluate expectation, moments, moment generating functions.	PO 1,2,3,6,7	Evaluate		L	
CO4	Explain Discrete Standard Distributions and apply discrete standard distributions in practical situations, Fit binomial and Poisson distributions to data sets	PO 1,2,3,6,7	Create		L	Р
CO5	Explain Normal and Standard normal	PO 1,2,3,6,7	Evaluate		L	Р

|--|

Mapping of COs with PSOs and POs :

	PSO	PS	PSO	PSO	PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	I	02	3	4	5							
CO	1	1	1	1	1	1	1	1	1		1	1
1												
CO	1	1	1			1	1					1
2												
CO	1	1	1			1	1	1			1	1
3												
CO	1	1	1	1		1	1	1			1	1
4												
CO	1	1	1	1		1	1	1			1	1
5												

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Internal Examination
- Practical Evaluation
- End Semester Examinations

Mapping of COs to Assessment Rubrics :

	Internal Exam	Quiz / Assignment/ Discussion / Seminar	Practical Evaluation	End Semester Examinations	
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	
CO 2	\checkmark	\checkmark	\checkmark	\checkmark	
CO 3	\checkmark	\checkmark		\checkmark	
CO 4	\checkmark	\checkmark	\checkmark	\checkmark	