

Discipline	CHEMISTRY								
Course Code	UK2DSCCHE100								
Course Title	ORGANIC CHEMISTRY I								
Type of Course	DSC	DSC							
Semester	2	2							
Academic Level	100 - 199								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours/Week				
	4	3 hours	-	2 hours	5				
Pre-requisites	1. Higher sec	ondary level	science						
	2. First semes	ster FYUGP	Chemistry D	SC					
Course Summary	In organic chemis	stry, carbon'	s unique pro	perties form	the basis for				
	classifying compo	unds, while f	functional gro	oups dictate th	neir reactivity.				
	Understanding reaction mechanisms and stereochemistry is crucial for								
	predicting and controlling organic reactions, alongside practical skills								
	in qualitative analysis, allowing for the identification of functional								
	groups and compo	unds.							

Detailed Syllabus:

Module	Unit	Content ORGANIC CHEMISTRY I	75 Hrs					
I		INTRODUCTION TO ORGANIC CHEMISTRY, NOMENCLATURE, FUNCTIONAL GROUPS AND REACTION NOTATIONS						
	1	Uniqueness of carbon: classification of organic compounds. Structure and Hybridization of alkanes alkenes and alkynes	2					
	2	Functional groups (mention only), Review of basic rules of IUPAC nomenclature of organic compounds.						
10	3	Definition of reaction mechanism. Frontier molecular orbitals and organic reactions: Introduction to HOMO and LUMO, electrophiles and nucleophiles - classification based on frontier orbitals. Drawing of electron movements with arrows: curved arrow notation, Half headed and double headed arrows. Nature of bond fissions: Homolysis and heterolysis.	4					
	4	Classification of reactions: addition, eliminations, substitution, rearrangement, oxidation, reduction and pericyclic reactions with one or 2 examples for each	5					
II	STER	EOCHEMISTRY I	12					

	5	Introduction to structure and stereo chemistry of organic molecules: salient features of symmetry elements; role of principal axis, sigma plane, centre of symmetry, and alternating axis of symmetry in deciding chirality	3
	6	Representation of organic molecules: Fischer, Flying wedge, Sawhorse and Newman projection formulae. Interconversion between Fischer and three-dimensional formula	
	7	Conformational and configurational isomerism, dihedral angle and torsional strain, conformational analysis of acyclic systems: ethane and n-butane including energy diagrams.	3
	8	Conformations of cyclic molecules-3, 4, 5 and 6 membered rings-Baeyer's strain theory, Sache-Mohr theory of strainless rings, Pitzer strain	3
	9	Conformations of cyclohexane: chair, boat and skew boat forms, axial and equatorial bonds, ring flipping.	3
III	STER	REOCHEMISTRY II	12
	10	Stereoisomerism: examples of compounds with one and two chiral centers, enantiomers and diastereomers, erythro and threo representations, meso compounds, prochiral faces, enantio and diastereotopicity	2
	11	Configurations and their specifications: absolute and relative configuration, configuration descriptors R/S and E/Z notations using Cahn-Ingold-Prelog rules, optical purity, enantio/diastereomeric excess	4
	12	Stereoisomerism in compounds without a stereogenic carbon: axial -, planar, helical chirality and assigning their configurational descriptors (R, S/M, P) –biphenyl, allenes, ansa and p-cyclophanes, helicines	3
	13	Racemic mixture, resolution, methods of resolution of racemic mixture	2
	14	Geometrical isomerism: cis-trans (maleic and fumaric acids), syn-anti (unsymmetrical ketoximes). Methods of distinguishing geometrical isomers using melting point, dipole moment, dehydration and cyclisation.	1
IV	ORG	ANIC REACTION MECHANISM I	9
1	15	Electron displacement effects: Inductive effect, electromeric effect, mesomeric effect, resonance, hyperconjugative and steric effects.	2
10	16	Acidity and basicity of organic compounds based on electron displacement effects: Acid characters of alcohols, phenols (phenol, o/m/p-cresols and o/m/p-nitro phenols) and carboxylic acids (aliphatic acids, mono, di, tri chloro acetic acids, Benzoic acid, o/m/p-nitro benzoic acids) and basic character of amines (aliphatic amines, aniline, N- & N, N-dimethyl aniline, o/m/p nitro anilines and o/m/p- toluedienes)	3

	17	Effects of hyperconjugative effect: stability of alkenes, alkylbenzenes, free radicals and carbocations. Dipole moment of propene and toluene	2				
	18	Reaction intermediates: Carbocations, carbanions, carbenes and nitrenes (definition, hybridization, structure, classification, formation, stability and important reactions).	2				
V	ORG	ANIC CHEMISTRY PRACTICAL- ORGANIC QUALITATIVE	2.0				
		LYSIS	30				
	19	Detection of Elements (Nitrogen, Sulphur and Halogen) using Lassaign's test	2				
	Solubility Tests: a) Classification of compounds into water soluble/insoluble; b) Classification of compounds into ether soluble/insoluble c) Solubility in Na2CO3, d) Solubility in NaOH e) Solubility in HCl						
	21	Tests for Aliphatic and Aromatic compounds: (i)Ignition test (ii)Nitration test	2				
	22	Tests for saturated and unsaturated compounds: (i)Oxidation (ii) Bromination	2				
	23	Tests to distinguish between following compounds: a) monocarboxylic acid and dicarboxylic acid; b) Primary, secondary and tertiary amines; c) monoamide and diamide; e) Aldehyde and ketone; f) Reducing and non-reducing sugars; g) monohydric phenols and dihydric phenols	3				
	24	Reactions of common functional groups using known organic compounds.	4				
	25	Systematic qualitative analysis with a view to characterization of the following functional groups a) Halo compounds: chlorobenzene, benzyl chloride; b) Phenols: phenol, o, m, p-cresols, naphthols, resorcinol; c) Aldehydes and ketones: benzaldehyde, acetophenone, benzophenone; d) 4 Carboxylic acids: benzoic, phthalic, cinnamic and salicylic acids; e) Esters: ethyl benzoate, methyl salicylate; f) Amides: benzamide, urea; g) Anilines: aniline, o,m, p - toluidines, dimethylaniline; h) Nitro compounds: nitrobenzene, o- & p- nitro toluene; i) Poly nuclear hydrocarbons: naphthalene, anthracene; j) Reducing and non-reducing sugars: glucose and sucrose	15				

References:

Text books:

1. J.Clayden, N.Greeves and S.Warren, Organic Chemistry, Oxford University Press, New York.

- 2. Carey, Francis A., Giuliano, Robert M. Organic Chemistry. United Kingdom: McGraw-Hill, 2011.
- 3. P. S. Kalsi, Stereochemistry Conformation and Mechanism. India: New Age International (P) Limited, 2008.
- 4. D., Stereochemistry of Organic Compounds: Principles and Applications, New Age International Publishers, New Delhi
- 5. John McMurry, Organic Chemistry, Brooks/Cole Cengage Learning, 2012
- 6. A.Bahl and B.S.Bahl, Advanced Organic Chemistry, S.Chand & Company, New Delhi.
- 7. L.G.Wade Jr, Organic Chemistry, Pearson Education, New Delhi.
- 8. K.S.Tewari, N.K.Vishnoi and S.N.Mehrotra, A textbook of Organic Chemisty, Vikas Publishing House (Pvt) Ltd., New Delhi..
- 9. S.C.Sharma and M.K.Jain, Modern Organic Chemistry, Vishal Publishing Company, New Delhi.
- 10. I L Finar, "Organic Chemistry" Vol 1, 5th Edition, Pearson Education, NewDelhi

For Further Reading

- 1. R.T. Morrison, R.N.Boyd. Organic Chemistry, Pearson Education, New Delhi.
- 2. P.Y.Bruice, Essential Organic Chemisty, Pearson Education, New Delhi.
- 3. Peter Sykes, A Guide Book to Mechanism in Organic Chemistry, Pearson Education, New Delhi.
- 4. G.M. Louden, Organic Chemistry, Oxford University Press, New York.
- E.L.Eliel, Stereochemistry of Carbon compounds, Tata McGraw Hill Publishing House, New Delhi.
- 6. J.March, Advanced Organic Chemistry, John Wiley & Sons., NY.
- 7. S.M.Mukerji and S.P.Singh, Reaction Mechanism in Organic Chemistry, McMillan Publishers.
- 8. R.O.C. Norman and J.M.Coxon, Principles of Organic Synthesis, CRC Press.

For Practicals

Textbooks

- 1. A.I.Vogel, "A text book of Qualitative Analysis including semi micro methods" Longmans.
- 2. V.V.Ramanujam, "Semi micro Qualitative Analysis"
- 3. E.S.Gilreath "Qualitative Analysis using semi micro method" Mc Graw Hill
- 4. A.I. Vogel, "A text book of Qualitative Inorganic Analysis" Longmans
- 5. A.I. Vogel, "Elementary Practical Organic Chemistry" Longmans
- 6. J B Yadav, Advanced Practical Physical Chemistry, Goel, Publishing House

For Further Reading

- 1. Day and Raman, "Laboratory Manual of Organic Chemistry".
- 2. B.Viswanathan and P.S Raghavan, "Practical Physical Chemistry" 2005 Edn. Viva Books (Pvt.Ltd)
- 3. F.G Mann and B.C Saunders, "Practical Organic Chemistry" 4th Edn, Orient Longmann
- 4. N.K., Vishnu, "Advanced practical organic chemistry" Vikas publishing house, New Delhi

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Recall the fundamentals of organic chemistry including nomenclature, functional groups, notation and classification	U	PSO-1
CO-2	Understand various conformational isomerism exhibited by organic molecules	R, U	PSO-1
CO-3	Develop curiosity in applying CIP rules to predict configuration of organic molecules	U,An	PSO-1,2,3
CO-4	Identify various electron displacement effects, reaction intermediates and reaction mechanism of substitution and elimination reactions	Ap, An	PSO-1,2
CO-5	Practice systematic scientific procedure for the qualitative analysis of organic compounds	U, Ap, C	PSO-1,2,3,4,5

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: ORGANIC CHEMISTRY 1

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tut orial (T)	Practical (P)
1	CO-1	PSO-1	U	F	L	1
2	CO-2	PSO-1	R, U	F	L	-
3	CO-3	PSO-1,2,3	U, An	С	L	-
4	CO-4	PSO-1,2	Ap, An	F,C	L	-
5	CO-5	PSO-1,2,3,4,5	U, Ap, C	P	-	P

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs:

	PSO 1	PSO 2	PSO 3	PSO 4	PS O5	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
--	----------	----------	----------	----------	----------	-----	-----	-----	-----	-----	-----	-----	-----

CO 1	2	-	-	-	-	2	-	-	-	-	-	-	-
CO 2	2	1	ı	1	-	2	2	ı	ı	1	ı	1	1
CO 3	2	3	1	-	-	2	2	ı	-	-	-	-	-
CO 4	3	3	-	-	_	2	2	-	_	-	_	-	-
CO 5	2	2	2	3	3	2	2	3	-	-	3	2	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	✓		-	✓
CO 2	✓	\	-	✓
CO 3	√	>	-	✓
CO 4	V ,	√	-	✓
CO 5	130	√	√	√