

University of Kerala

		श्वेमान व्याज्यते प्रही	8			X
	Un	iversity of K	Kerala			K'O'
Discipline	CHEMISTRY					
Course Code	UK2DSCCHE10	0				
Course Title	ORGANIC CHE	MISTRY I				
Type of Course	DSC				1	
Semester	2					
Academic Level	100 - 199					
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours/Week	
	4	3 hours	-	2 hours	5	
Pre-requisites	1. Higher sec	ondary level	science	20-		
			Chemistry D			
Course Summary	0		· · · · · · · · · · · · · · · · · · ·	1 1 I	orm the basis for	
					te their reactivity.	
	0	/			stry is crucial for	
			•	-	practical skills in	
qualitative analysis, allowing for the identification of functional groups and						
	compounds.		Y			
Detailed Syllabus:	Ċ	ent				
	`	Co	ntent			

Detailed Syllabus:

Module	Unit	Content ORGANIC CHEMISTRY I	75 Hrs
Ι		ODUCTION TO ORGANIC CHEMISTRY, NOMENCLATURE, CTIONAL GROUPS AND REACTION NOTATIONS	9
	1	Uniqueness of carbon: classification of organic compounds. Structure and hybridization of alkanes alkenes and alkynes	2
	2	Functional groups (mention only), Review of basic rules of IUPAC nomenclature of organic compounds.	1
~2	3	Definition of reaction mechanism, electrophiles and nucleophiles - Drawing of electron movements with arrows: curved arrow notation, Half headed and double headed arrows. Nature of bond fissions: Homolysis and heterolysis.	2
	4	Classification of reactions: addition, eliminations, substitution, rearrangement, oxidation, reduction and pericyclic reactions with one example for each.	4
II	STER	REOCHEMISTRY I	12
	5	Introduction to structure and stereo chemistry of organic molecules: salient features of symmetry elements; role of principal axis, sigma	3

	1			1
		plane, centre of symmetry, and alternating axis of symmetry in deciding chirality		
		Representation of organic molecules: Fischer, Flying wedge,		C)
	6		3	X
	6	Sawhorse and Newman projection formulae. Interconversion between	5	
		Fischer and three-dimensional formula		
		Conformational and configurational isomerism, dihedral angle and		
	7	torsional strain, conformational analysis of acyclic systems: ethane	3	
		and n-butane including energy diagrams.		
		Conformations of cyclic molecules-3, 4, 5 and 6 membered rings-		
	8	Baeyer's strain theory, Conformations of cyclohexane: chair, boat	3	
		and skew boat forms, axial and equatorial bonds, ring flipping.		
III	STER	REOCHEMISTRY II	12	
		Stereoisomerism: examples of compounds with one and two chiral		
	9	centers, enantiomers and diastereomers, erythro and threo	3	
	-	representations, meso compounds.	C C	
		Configurations and their specifications: absolute and relative		
		configuration, configuration descriptors R/S and E/Z notations using		
	10		4	
		Cahn-Ingold-Prelog rules, optical purity, enantio/diastereomeric		
	11	Racemic mixture, resolution, methods of resolution of racemic	2	
		mixtures		
		Geometrical isomerism: cis-trans (maleic and fumaric acids), syn-anti		
	12	(unsymmetrical ketoximes). Methods of distinguishing geometrical	3	
	12	isomers using melting point, dipole moment, dehydration and	5	
		cyclisation.		
IV	ORG	ANIC REACTION MECHANISM I	12	
	13	Electron displacement effects: Inductive effect, electromeric effect,	3	
	15	mesomeric effect, resonance, hyper conjugative and steric effects.	5	
		Acidity and basicity of organic compounds based on electron		
		displacement effects: Acid characters of alcohols, phenols (phenol,		
	1.4	o/m/p-cresols and o/m/p-nitro phenols) and carboxylic acids	2	
	14	(aliphatic acids, mono, di, tri chloro acetic acids, Benzoic acid,	3	
		o/m/p-nitro benzoic acids) and basic character of amines (aliphatic		
		amines, aniline, N- & N, N-dimethyl aniline.		
		Effects of hyper conjugative effect: stability of alkenes,		
	15	alkylbenzenes, free radicals and carbocations. Dipole moment of	2	
	15	propene and toluene.	2	
		Reaction intermediates: Carbocations, carbanions, carbenes and		
	10		4	
	16	nitrenes (definition, hybridization, structure, classification, formation,	4	
T		stability and examples for each).		
V		ANIC CHEMISTRY PRACTICAL- ORGANIC QUALITATIVE	30	
	ANA			
	17	Detection of Elements (Nitrogen, Sulphur and Halogen) using	2	
		Lassaign's test	-	

	Solubility Tests: a) Classification of compounds into water soluble/insoluble; b) Classification of compounds into ether			
1	soluble/insoluble; c) Solubility in Na ₂ CO ₃ ; d) Solubility in NaOH; e)	2		
	Solubility in HCl.			
1	Tests for Aliphatic and Aromatic compounds: (i) Ignition test (ii)			
1.	Nitration test	2		
20	Tests for saturated and unsaturated compounds: (i) Oxidation (ii)	2		
	Bromination			
	Tests to distinguish between following compounds: a)			
	monocarboxylic acid and dicarboxylic acid; b) Primary, secondary	3		
2				
	ketone; e) Reducing and non-reducing sugars; f) monohydric phenols			
	and dihydric phenols			
22	Reactions of common functional groups using known organic compounds.	4		
	Systematic qualitative analysis with a view to characterization of the			
	following functional groups			
	a) Halo compounds: chlorobenzene, benzyl chloride;			
	b) Phenols: phenol, o, m, p -cresols, naphthols, resorcinol;			
	c) Aldehydes and ketones: benzaldehyde, acetophenone,			
	benzophenone;			
2	d) 4 Carboxylic acids: benzoic, phthalic, cinnamic and salicylic acids;	15		
۷.	e) Esters: ethyl benzoate, methyl salicylate;	15		
	f) Amides: benzamide, urea;			
	g) Anilines: aniline, o, m, p - toluidines, dimethylaniline;			
	h) Nitro compounds: nitrobenzene, o- & p- nitro toluene;			
	i) Poly nuclear hydrocarbons: naphthalene, anthracene;			
	j) Reducing and non-reducing sugars: glucose and sucrose			
	(Any five functional groups mandatory and three open ended)			

References:

- 1. J.Clayden, N.Greeves and S.Warren, *Organic Chemistry*, Oxford University Press, New York.
- 2. Carey, Francis A., Giuliano, Robert M. *Organic Chemistry*. United Kingdom: McGraw-Hill, 2011.
- 3. P. S. Kalsi, *Stereochemistry Conformation and Mechanism*. India: New Age International (P) Limited, 2008.
- 4. D. Nasipuri, *Stereochemistry of Organic Compounds: Principles and Applications*, New Age International Publishers, New Delhi
- 5. John McMurry, Organic Chemistry, Brooks/Cole Cengage Learning, 2012
- 6. A. Bahl and B. S. Bahl, Advanced Organic Chemistry, S. Chand & Company, New Delhi.
- 7. L. G. Wade Jr, *Organic Chemistry*, Pearson Education, New Delhi.
- 8. K. S. Tewari, N. K. Vishnoi and S. N. Mehrotra, *A textbook of Organic Chemistry*, Vikas Publishing House (Pvt) Ltd., New Delhi.

- 9. S. C. Sharma and M. K. Jain, *Modern Organic Chemistry*, Vishal Publishing Company, New Delhi.
- 10. I L Finar, "Organic Chemistry" Vol 1, 5th Edition, Pearson Education, New Delhi
- 11. R.T. Morrison, R. N. Boyd. Organic Chemistry, Pearson Education, New Delhi.
- 12. P. Y. Bruice, *Essential Organic Chemistry*, Pearson Education, New Delhi.
- 13. Peter Sykes, A Guide Book to Mechanism in Organic Chemistry, Pearson Education, New Delhi.
- 14. G.M. Louden, Organic Chemistry, Oxford University Press, New York.
- 15. E. L. Eliel, *Stereochemistry of Carbon compounds*, Tata McGraw Hill Publishing House, New Delhi.
- 16. J. March, Advanced Organic Chemistry, John Wiley & Sons., NY.
- 17. S. M. Mukerji and S. P. Singh, *Reaction Mechanism in Organic Chemistry*, McMillan Publishers.
- 18. R. O. C. Norman and J. M. Coxon, *Principles of Organic Synthesis*, CRC Press.

For Practicals

- 1. A. I. Vogel, "A text book of Qualitative Analysis including semi micro methods" Longmans.
- 2. V. V. Ramanujam, "Semi micro-Qualitative Analysis"
- 3. E. S. Gilreath "Qualitative Analysis using semi micro method" Mc Graw Hill
- 4. A. I. Vogel, "Elementary Practical Organic Chemistry" Longmans.
- 5. Day and Raman, "Laboratory Manual of Organic Chemistry".
- 6. F.G Mann and B.C Saunders, "Practical Organic Chemistry" 4th Edn, Orient Longmann.
- 7. N. K. Vishnu, "Advanced practical Organic Chemistry" Vikas publishing house, New Delhi

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Recall the fundamentals of organic chemistry including nomenclature, functional groups, notation and classification	<u>U,</u> An	PSO-1
CO-2	Develop the idea of symmetry elements and its importance in stereochemistry and understanding of various conformational isomerism exhibited by organic molecules.	U, An	PSO-1
CO-3	Develop curiosity in applying CIP rules to predict configuration of organic molecules and understanding of geometrical isomerism and its importance in organic compounds.	U, An	PSO-1,2,3

CO-4	Identify various electron displacement effects, its consequences, reaction intermediates and their role in organic reaction mechanisms.					PSO-1,2	X		
CO-5	P-5 Practice systematic scientific procedure for the qualitative analysis of organic compounds								
R-Reme	ember, U-U	nderstand, Ap-A	pply, An-Analyse	e, E-Evaluate,	C-Create		2		
Name of	f the Course	e: ORGANIC CI	HEMISTRY 1			is			
Credits	: 3:0:1 (Lect	ture:Tutorial:Pra	actical)		2	2			
CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tut orial (T)	Practical (P)			

Name of the Course: ORGANIC CHEMISTRY 1

CO No.	со	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tut orial (T)	Practical (P)
1	CO-1	PSO-1	<u>U,</u> An	F	L	-
2	CO-2	PSO-1	U, An	F	L	-
3	CO-3	PSO-1,2,3	U, An	С	L	-
4	CO-4	PSO-1,2	Ap, An	F, C	L	-
5	CO-5	PSO-1,2,3,4,5	U, Ap, An	Р	-	Р

Credits: 3:0:1 (Lecture:Tutorial:Practical)

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs:

	PSO 1	PSO 2	PSO 3	PSO 4	PS O5	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO 1	2		-	-	-	2	-	-	-	-	-	-	-
CO 2	2	2	-	-	-	2	2	-	-	-	-	-	-
CO 3	2)	3	1	-	-	2	2	-	-	-	-	-	-
CO 4	3	3	-	-	-	2	2	-	-	-	-	-	-
CO 5	2	2	2	3	3	2	2	3	-	-	3	2	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar •
- Midterm Exam
- Programming Assignments •
- Final Exam •

Mapping of COs to Assessment Rubrics:

rrelatior	n Levels:				
		Level	Correlation		SX.
		-	Nil		
		1	Slightly / Low		
		2	Moderate / Mediur		
		3	Substantial / High		Y
• • • • • • • • • • • •	Midterm Exa	m g Assignments		2015 R.C.	
	Internal Exam	Assignment	Project Evaluation	End Semester Examinations	
CO 1	\checkmark	\checkmark	<u> </u>	\checkmark	
CO 2	\checkmark	\checkmark		\checkmark	
CO 3	\checkmark	\checkmark	Y	\checkmark	
CO 4	\checkmark	\checkmark	- ``	\checkmark	
CO 5	\checkmark			,	

chis