

University of Kerala

Discipline	CHEMISTRY								
Course Code	UK2DSCCHE101								
Course Title	FUNDAMENTAL	S OF CHE	MISTRY II		1				
Type of Course	DSC								
Semester	2								
Academic Level	100 - 199				* * * *				
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours/Week				
	4	3 hours	-	2 hours	5				
Pre-requisites	1. Higher second	ary level scie	nce knowled	ge					
	2. Any first seme	ster DSC (ch	emistry) offe	ered by UoK ((preferable)				
Course	The course include	s subjects in	petrochemic	cals, catalysis	, photochemistry,				
Summary	metallurgy, and na	anomaterials	and basic p	rinciples in t	he gaseous state.				
	Students have practical	ctical experie	ence in anal	ytical proced	ures and acquire				
	critical thinking ski	ills through o	pen-ended ex	xperiments su	ch as gravimetric				
	analysis and deter	- 1	•	-	•				
	qualitative analysis		Y	,	S				

Detailed Syllabus:

Module	Unit	Contents	Hrs
		FUNDAMENTALS OF CHEMISTRY II	75
I	GAS	EOUS STATE	9
	1	Maxwell's distribution of molecular velocities (No derivation),	3
		average, most probable and rms velocities	
	2	Collision number and collision frequency, mean free path,	1
	3	Deviation of gases from ideal behaviour – Boyle temperature,	2
		derivation of vander waals constants and critical constants	
	4	Law of corresponding states – reduced equation of state, Joule	3
.1		Thomson effect, liquefaction of gases – Linde's and Claude's	
		processes.	
\II\	PETI	ROCHEMICALS AND ALTERNATE SOURCES	9
	5	Petrochemicals: - Introduction, Natural gas - CNG, LNG and LPG.	2
		Coal: classification based on carbon content- Carbonisation of coal	
	6	Crude oil: constitution and distillation, composition and uses of	3
		important Fractions Ignition point, flash point and octane number-	
		cracking Usage and depletion of petroleum products.	
	7	Need for alternative fuel and Green Chemistry approaches for	1
		sustainable development:	

	8	Introduction, Solar energy harvesting- photosynthesis Photo voltaic	3
		cell, conventional solar cells, nano structured solar cells, Hydrogen as	
		the future fuel	
III	CRY	STALLINE STATE	9
	9	Isotropy and anisotropy – symmetry elements in crystals – the seven	3
		crystal systems. Miller indices, Bravais lattices, primitive, bcc and hcc	3
		of cubic crystals	
	10	·	$\dot{\Box}$
	10	Representation of lattice planes of simple cubic crystal - Density from	2
	11	cubic lattice dimension – calculation of Avogadro number	
	11	Bragg equation, diffraction of X-rays by crystals – single crystal and	4
		powder method. Detailed study of structures of NaCI and KCl crystals.	
IV		ALLURGY & CHEMISTRY OF NANOMATERIALS	18
	12	General principles of occurrence and extraction of metals,	3
		Concentration of ores- roasting, calcination and smelting	
	13	General Methods of extracting metal from concentrated ore, examples	3
		Electro metallurgy-Metallurgy of Aluminium, Sodium-Pyrometallurgy	
	14	Refining of crude metals: Distillation, Liquation, electrolytic and zone	3
		refining Chromatographic techniques and vapour phase refining	
		(Mond's process and Van Arkel process)	
		Metallurgy of titanium, cobalt, nickel, thorium and uranium	
	15	Evolution of Nano science – Historical aspects – preparations	2
		containing nano gold in traditional medicine, Lycurgus cup –	_
		Faraday's divided metal etc. Nanosystems in nature.	
	16	Preparation of Nano particles – Top – down approach and bottom – top	3
	10	approach, Sol – gel synthesis, colloidal precipitations, Co-	
		precipitation, combustion technique.	
	17	Properties of nano particles: optical, magnetic and mechanical	2
	1,	properties.	_
	18	Applications of nano materials in electronics, robotics, computers,	2
	10	sensors, mobile electronic devices, medical applications (use Au, Ag,	2
		ZnO and ZnO2 as examples)	
V	PRAG	CTICALS: INORGANIC QUALITATIVE ANALYSIS	30
•	19	I. REACTIONS OF THE FOLLOWING CATIONS:	15
	1)	Hg ⁺ , Pb ²⁺ , Ag ⁺ , Hg ²⁺ , Bi ³⁺ , Cd ²⁺ , As ³⁺ , Sb ³⁺ , Sn ²⁺ , Sn ⁴⁺ , Fe ³⁺ , Al ³⁺ ,	13
	6	Cr^{3+} , Mn^{2+} , Zn^{2+} , Ni^{2+} , Cd^{2+} , Ba^{2+} , Ca^{2+} , Sr^{2+} , Mg^{2+} and NH_4^+ .	
		Ci , Mii , Zii , Ni , Cu , Da , Ca , Si , Mg aliu NH4.	
.1		II. SYSTEMATIC ANALYSIS OF TWO CATIONS IN A	
10		MIXTURE	
		The cations must be provided in solutions. A student must analyze at	
	20	least 8 mixtures containing two cations each.	1.7
	20	OPEN ENDED PRACTICALS: (Any 3 experiments are to be	15
		conducted - May be selected from the list or the teacher can add	
		related experiments)	
		III. GRAVIMETRIC ANALYSIS	
		a. Estimation of water of hydration in barium chloride crystals.	

 b. Estimation of barium chloride solution. IV. DETERMINATION PHYSICAL CONSTANTS a. Determination of boiling points of common solvents (b.pt range 100°C - 130°C 	
b. Determination of melting points of organic substances (m.pt range 100°C - 130°C)	

References

- 1. B. R. Puri, L. R. Sharma and M. S. Pathania, *Principles of Physical Chemistry*, 46th Edn Vishal Publishing Co. New Delhi.
- 2. J E Huheey, E A Keiter, R L Keiter, O K Medhi, *Inorganic Chemistry*, 4th Edn. Pearson.
- 3. F A Cotton and Wilkinson, *Advanced Inorganic Chemistry*, John Wiley, New York.
- 4. P L Soni, O P Dharmarsha, U N Dash, *Textbook of Physical Chemistry*, 23rd Edn, Sultan Chand & Sons, New Delhi, 2011.
- 5. Gurudeep Raj, Advanced physical chemistry.
- 6. F Daniel and R A Alberty, *Physical chemistry*.
- 7. T Pradeep, A Text book of Nanoscience and Nanotechnology, Mc Graw Hill, New Delhi.
- 8. J V. V.Ramanujam, "Semi micro Qualitative Analysis"
- 9. E. S. Gilreath "Qualitative Analysis using semi micro method" Mc Graw Hill.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Understand the effect of temperature on molecular velocities of gases and equation for real gases	U	PSO-1
CO 2	Apply the principles in liquefaction of gases	Ap	PSO-2
CO 3	Apply the importance of energy and environment conservation	Ap	PSO-3
CO 4	Get insight to the emerging area of nano and advanced materials	U	PSO-3
CO 5	Apply the principles of physical Chemistry in Catalysis and photochemistry	Ap	PSO-4
CO 6	Apply the basic principles in qualitative analysis and identify cation and anion.	Ap	PSO-2 &4
CO 7	Discuss the basic principles of metallurgy	U	PSO-1 &2
CO 8	Demonstrate the extraction of some metals used in daily life	Ap	PSO-2&4

CO 9	Apply the principles in analytical chemistry to identify the cations	Ap	PSO-5	
------	--	----	-------	--

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: FUNDAMENTALS OF CHEMISTRY II

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/ PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
1	CO-1	PO-1 PSO-1	U	F, C	T	
2	CO 2	PO-2 PSO-2	Ap	P	T	
3	CO 3	PO-8 PSO-3	Ap	O	T	
4	CO 4	PO-3 PSO-3	U	C, M	Т	
5	CO 5	PO-2 PSO-4	Ap	С	Т	
6	CO 6	PO-6 PSO-2 &4	Ap	Р		Р
7	CO 7	PO-2& 6 PSO-1 &2	U	Р		Р
8	CO 8	PO-2 PSO-2&4	Ap	Р		Р
9	CO 9	PO-3 PSO-5	Ap	P		Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs:

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO 1	2	-	-	-	-	2	-	-	-	-	-	-	-

CO 2	-	2	-	-	-	-	2	-	-	-	-	-	-
CO 3	-	-	3	-	-	-	-	3	-	-	-	-	-
CO 4	-	-	3	-	-	-	-	3	-	-	-	-	-
CO 5	ı	1	i	3	-	1	3	-	i	-	-	-	-
CO 6	-	2	-	2	-	-	-	-	-	-	2	-	-
CO 7	2	2	-	-	-	-	2	-	-	-	2	-	-
CO 8	ı	2	-	2	-	ı	2	-	-	-	-	4-1	7 -
CO 9	-	-	-	-	3	-	-	2	-	-	- 4	25	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	V	V 1		$\sqrt{}$
CO 2	1	$\sqrt{}$		$\sqrt{}$
CO 3	V	$\sqrt{}$		$\sqrt{}$
CO 4				$\sqrt{}$
CO 5	1			$\sqrt{}$
CO 6				$\sqrt{}$
CO 7			$\sqrt{}$	
CO 8				
CO 9	V			