

Discipline	CHEMISTRY				A		
Course Code	UK2DSCCHE101						
Course Title	FUNDAMENTAL	S OF CHE	MISTRY II				
Type of Course	DSC						
Semester	2						
Academic Level	100 - 199						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours/Week		
	4	3 hours	-	2 hours	5		
Pre-requisites	Higher seconda	ary level scie	nce knowled	ge			
	2. Any first seme	ster DSC (Cl	nemistry) off	ered by UoK	(preferable)		
Course	The course include	es subjects in	n petrochemi	icals, catalysi	s, photochemistry,		
Summary	metallurgy, and na	anomaterials	and basic p	orinciples in	the gaseous state.		
	Students have practical experience in analytical procedures and acquire						
	critical thinking skills through open-ended experiments such as gravimetric						
		analysis and determination of physical constants, focused on inorganic					
	qualitative analysis			,			

Detailed Syllabus:

Module	Unit	Contents	Hrs					
		FUNDAMENTALS OF CHEMISTRY II	75					
I	GASI	EOUS STATE	9					
	1	Maxwell's distribution of molecular velocities (derivation not	3					
		expected), average, most probable and rms velocities (derivations not						
		expected, simple problems expected)						
	2	Collision number and collision frequency, mean free path,	1					
	3	Deviation of gases from ideal behaviour – Boyle temperature,	2					
	derivation of Van der Waal's constants and critical constants							
	4	Law of corresponding states – reduced equation of state, Joule	3					
		Thomson effect, liquefaction of gases – Linde's and Claude's						
	processes.							
II	PETI	ROCHEMICALS AND ALTERNATE SOURCES	9					
	5 Petrochemicals: - Introduction, Natural gas - CNG, LNG and LPG.							
	Coal: classification based on carbon content- Carbonisation of coal.							
	6 Crude oil: constitution and distillation, composition and uses of							
		important Fractions Ignition point, flash point and octane number-						
		cracking Usage and depletion of petroleum products.						

	7	Need for alternative fuel and Green Chemistry approaches for	1
		sustainable development.	-
	8	Introduction, Solar energy harvesting- photosynthesis Photo voltaic	3
		cell, conventional solar cells, nano structured solar cells, Hydrogen as	
TTT	CDX	the future fuel	0
III		STALLINE STATE	9
	9	Isotropy and anisotropy – symmetry elements in crystals – the seven	3
		crystal systems. Miller indices, Bravais lattices, primitive, bcc and hcc	
	10	of cubic crystals Representation of lettice planes of simple cubic crystal. Density from	2
	10	Representation of lattice planes of simple cubic crystal - Density from cubic lattice dimension – calculation of Avogadro number	2
	11	Bragg equation, diffraction of X-rays by crystals – single crystal and	4
	11	powder method. Detailed study of structures of NaCI and KCl crystals.	4
IV	MET	ALLURGY & CHEMISTRY OF NANOMATERIALS	18
1.4	12	General principles of occurrence and extraction of metals,	3
	12	Concentration of ores- roasting, calcination and smelting	3
	13	General Methods of extracting metal from concentrated ore, examples	3
	13	Electro metallurgy-Metallurgy of Aluminium, Sodium-Pyrometallurgy	3
	14	Refining of crude metals: Distillation, Liquation, electrolytic and zone	3
	1.	refining and vapour phase refining (Mond's process and Van Arkel	3
		process)	
		Metallurgy of titanium, nickel, thorium and uranium	
	15	Evolution of Nano science – Historical aspects – preparations	2
		containing nano gold in traditional medicine, Lycurgus cup –	
		Faraday's divided metal etc. Nanosystems in nature.	
	16	Preparation of Nano particles – Top – down approach and bottom – top	3
		approach, Sol – gel synthesis and colloidal precipitations.	
	17	Properties of nano particles: optical, magnetic and mechanical	2
		properties.	
	18	Applications of nano materials in electronics, sensors and medical	2
		applications (use Au, Ag, ZnO and ZnO ₂ as examples)	
${f V}$	PRAC	CTICALS: INORGANIC QUALITATIVE ANALYSIS	30
	19	I. REACTIONS OF THE FOLLOWING CATIONS:	15
	. ($Hg^{+}, Pb^{2+}, Ag^{+}, Hg^{2+}, Bi^{3+}, Cd^{2+}, As^{3+}, Sb^{3+}, Sn^{2+}, Sn^{4+}, Fe^{3+}, Al^{3+},$	
		Cr^{3+} , Mn^{2+} , Zn^{2+} , Ni^{2+} , Cd^{2+} , Ba^{2+} , Ca^{2+} , Sr^{2+} , Mg^{2+} and NH_4^+ .	
		II. SYSTEMATIC ANALYSIS OF TWO CATIONS IN A	
		MIXTURE	
(^ Y		The cations must be provided in solutions. A student must analyze at	
	20	least 5 mixtures containing two cations each.	15
	20	OPEN ENDED PRACTICALS: (Any 3 experiments are to be conducted - May be selected from the list or the teacher can add	15
		related experiments)	
		i ciaicu capei iiiciiis)	
		III. GRAVIMETRIC ANALYSIS	
		a. Estimation of water of hydration in barium chloride crystals.	
<u> </u>	<u> </u>	Estimation of material injuration in surface or journs.	

b. Estimation of barium chloride solution.	
IV. DETERMINATION PHYSICAL CONSTANTS	
a. Determination of boiling points of common solvents (b.pt range 100°C - 130°C	
b. Determination of melting points of organic substances (m.pt	
range 100°C - 130°C)	

References

- 1. B. R. Puri, L. R. Sharma and M. S. Pathania, *Principles of Physical Chemistry*, 46th Edn. Vishal Publishing Co. New Delhi.
- 2. J. E. Huheey, E. A. Keiter, R. L. Keiter, O. K Medhi, *Inorganic Chemistry*, 4th Edn. Pearson.
- 3. F. A. Cotton and Wilkinson, *Advanced Inorganic Chemistry*, John Wiley, New York.
- 4. P. L. Soni, O. P. Dharmarsha, U N Dash, *Textbook of Physical Chemistry*, 23rd Edn., Sultan Chand & Sons, New Delhi, 2011.
- 5. Gurudeep Raj, Advanced physical chemistry.
- 6. F Daniel and R. A. Alberty, *Physical chemistry*.
- 7. T. Pradeep, A Text book of Nanoscience and Nanotechnology, Mc Graw Hill, New Delhi.
- 8. J. V. V..Ramanujam, "Semi micro Qualitative Analysis"
- 9. E. S. Gilreath "Qualitative Analysis using semi micro method" Mc Graw Hill.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Analyze the behavior of gases, the concepts of collision dynamics, deviations from ideal behavior, and the principles underlying gas liquefaction processes.	U, An	PSO-1
CO 2	Get the idea about the composition, properties, and processing of petrochemical resources, their environmental impact and explore sustainable alternatives for development.	U, An	PSO-2
CO 3	Analyze crystal symmetry, lattice structures, and X-ray diffraction techniques and detailed structures of crystalline solids such as NaCl and KCl.	Ap, An	PSO-3
CO 4	Analyze the principles and methods involved in the extraction, refining, and application of metals	Ap, An	PSO -3
CO 5	Discuss the basic ideas of nanoscience, the synthesis, properties, and applications of nanomaterials in various fields.	Ap, An	PSO-4

CO 6	Apply the basic principles in qualitative analysis and identify	Ap, An	PSO-2 &4
	cation and anion.		

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: FUNDAMENTALS OF CHEMISTRY II

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/ PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
1	CO-1	PO-1 PSO-1	U, An	F, C	Т	
2	CO 2	PO-2 PSO-2	U, An	P	T	
3	CO 3	PO-8 PSO-3	Ap, An	C	T	
4	CO 4	PO-3 PSO-3	Ap, An	C, M	T	
5	CO 5	PO-2 PSO-4	Ap, An	С	T	
6	CO 6	PO-6 PSO-2 &4	Ap, An	Р		Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs:

	PSO	PSO	PSO	PSO	PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
	1	2	3	4	5								
CO 1	2	-	-	-	-	2	-	-	-	-	-	-	-
CO ₂	-	2	-	-	-	-	2	-	-	-	-	-	-
CO3	-	-	3	-	-	ı	-	3	-	-	-	-	-
CO 4	-	-	3	-	-	-	-	3	-	-	-	-	-
CO 5	-	-	-	3	-	-	3	-	-	-	-	-	-
CO 6	-	2	-	2	-	-	-	-	-	-	2	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark	$\sqrt{}$		$\sqrt{}$
CO 2	$\sqrt{}$	$\sqrt{}$		
CO 3	$\sqrt{}$	1		$\sqrt{}$
CO 4	$\sqrt{}$?		V
CO 5		4		V
CO 6	V	2		V