

University of Kerala

Discipline	STATISTICS								
Course Code	UK3DSCSTA208	JK3DSCSTA208							
Course Title	STATISTICAL INF	STATISTICAL INFERENCE							
Type of Course	DSC	DSC							
Semester	III								
Academic	200 - 299								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours/Week				
	4	3 hours	-	2 hours	5				
Pre-requisites									

COURSE OUTCOMES

Up on	Completion of the course, students should	Cognitive	PSO
	be able to:	level	addressed
CO1	Define the concept of sampling	Understand	PSO 1
	distributions.		
CO 2	Explain the properties of estimators	Understand	PSO 1
CO3	Solve numerical problems for the point	Apply	PSO 1,2,3,4,5
	and interval estimators of the		
	parameters.		
CO4	Explain the fundamental concepts of	Understand	PSO 1
	testing of hypothesis.		
CO5	Apply tests for hypothesis	Apply	PSO
			1,2,3,4,5,6

COURSE CONTENT

Module	Content	Hrs				
Ι	Sampling distributions	10				
	Sampling distributions - Parameter and statistic, Sampling distributions- Central					
	limit Theorem (Statement only). Distribution of mean of a sample taken from a					
	normal population; chi-square, t and F distributions (definitions only) and					
	statistics following these distributions, relation between normal, chi-square, t					
	and F distributions (No derivations required).					
II	Estimation Theory	10				
	Point estimation, desirable properties of estimators – unbiasedness, consistency,					
	efficiency (definitions and simple problems) and sufficiency (definition only);					
	Confidence Interval of mean, variance and difference of means (No derivations					
	required). Methods of estimation –Maximum likelihood and method of moments					
III	Testing of Hypothesis	15				

	Testing of Hypothesis: statistical hypotheses, null and alternative hypotheses, simple and composite hypotheses, two types of errors, significance level, p- value, power of a test. Z test- testing mean and proportion (one and two sample cases). Chi-square test of goodness of fit, independence/homogeneity.	
IV	Small sample tests	10
	Small sample tests: t- test for one sample, independent samples and paired samples, Chi-square test for variance, F- test for equality of variances.	
V	Practicum	30
	Practical based on Modules II, III &IV. Practical is to be done using R package.	

PRACTICAL/LABWORK

List of Practical worksheet

- 1. Confidence interval.
- **2.** Z-test
- **3.** T-test
- 4. Chi-square test
- **5.** F- test for equality of variances

REFERENCES

- 1. Gupta, S.C and Kapoor, V.K (2020). Fundamentals of Mathematical Statistics, Sultan Chands.
- 2. Mukhopadhyay, P. (1996). Mathematical Statistics. New Central Book Agency (P) Ltd, Calcutta
- 3. Agarwal, B.L. (2006). Basic Statistics. 4th Edition, New Age international (P) Ltd., New Delhi.
- 4. Dalgaard, P. (2008). Introductory Statistics with R, Springer, New York.
- 5. Purohit, S. G., Deshmukh, S.R., & Gore, S. D. (2008). Statistics using R. Alpha Science International, United Kingdom.

Name of the Course: STATISTICAL INFERENCE Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/PSO	Cognitive Level	Knowledge Category	Lecture (L)/Tutori al	Practical (P)
1	Define the concept of sampling distributions.	PSO 1 PO 1	Understand	F, C	L	
2	Explain the properties of estimators	PSO 1 PO 1	Understand	F, C	L	
3	Solve numerical problems for the point and interval estimators of the parameters	PSO 1,2,3,4,5 PO 1,2,4,7	Apply	Р	L	Р

4	Explain the fundamental concepts of testing of hypothesis	PSO 1 PO 1	Understand	F, C	L	
5	Apply large tests of hypothesis.	PSO 1,2,3,4,5,6 PO 1,2,4,7	Apply	Р, М	L	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

	PS O 1	PS O 2	PS O 3	PS O 4	PS O 5	PS O 6	РО 1	РО 2	РО 3	РО 4	PO 5	PO 6	РО 7	PO 8
CO 1	2						2							
CO 2	3						2							
CO 3	3	2	1	1	2		2	1		2			2	
CO 4	1						1							
CO 5	3	2	1	1	2		2	1		2			2	

Mapping of COs with PSOs and POs:

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Internal Examinations
- Practical Evaluation
- End Semester Examinations

Mapping of COs to Assessment Rubrics :

	Internal Exam	Quiz / Assignment/ Discussion / Seminar	Practical Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark		\checkmark
CO5	\checkmark	\checkmark	\checkmark	\checkmark
CO6	\checkmark	\checkmark		\checkmark

University of Kerala

Discipline	STATISTICS								
Course Code	UK3DSCSTA209	UK3DSCSTA209							
Course Title	PROBABILITY AN	PROBABILITY AND DISTRIBUTIONS - I							
Type of Course	DSC	DSC							
Semester	III								
Academic	200 - 299								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours/Week				
	4	3 hours	-	2 hours	5				
Pre-requisites									

COURSE OUTCOMES

Up or	n Completion of the course, students should be able to:	Cognitive level	PSO addressed
CO1	Illustrate random variables and their probability distributions	Analyse	PSO-1,2,3,4
CO2	Calculate moments of random variables	Apply	PSO-1,2,3,4
CO3	Determine generating functions of random variables	Apply	PSO-1,2,3
CO4	Demonstrate bivariate random variables and their distributions	Analyse	PSO-1,2,3,4

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create COURSE CONTENT

Module	Content	Hrs
Ι	Random variable	13
	Random variable, Distribution function of a random variable - properties,	
	Discrete and Continuous random variables, probability mass function and	
	probability density function, their properties, functions of random variables,	
	transformation of random variables.	
II	Bivariate random variable	12
	Bivariate random variable, joint distribution function and its properties, joint	
	probability mass function and joint probability density function and their	
	properties, marginal and conditional distributions, independence of random	
	variables, transformations of bivariate random variable.	
III	Mathematical expectation	10
	Mathematical expectation, properties, addition and multiplication theorem on	
	expectation, expectation of function of random variables, moments-univariate	
	and bivariate, Cauchy – Schwartz inequality, correlation coefficient, conditional	
	expectation (regression function), conditional variance.	
IV	Generating functions	10