

University of Kerala

Discipline	Mathematics							
Course Code	UK1DSCMAT110							
Course Title	Matrices and Linear Equations							
Type of Course	DSC							
Semester	I							
Academic Level	100-199							
Course Details	Credit	Credit Lecture Tutorial Practical Total						
		per week per week Hours per week						
	4 4 4							
Pre-requisites	Matrices							
Course Summary	This is a brief introductory course on matrices and system of linear equations							

Detailed Syllabus

Module	Unit	Contents	Hrs					
I		System of linear equations and matrices						
	1	Introduction to Systems of Linear Equations, Gaussian						
		Elimination, Matrices and Matrix Operations,						
		Inverses; Algebraic Properties of Matrices, [Section 1.1						
	4	to 1.4 of the Text]						
II		Further properties of matrices						
	2	Elementary matrices and method for finding inverse,						
		more on linear systems and invertible matrices, diagonal,						
		triangular and symmetric matrices, matrix transformations						
		[Section 1.5 to 1.8 of the Text]						
III	Determinants							
	3	Determinants by cofactor expansion, evaluating						
		determinants by row reduction, properties of determinants,						
		Cramer's rule						

Module	Unit	Unit Contents				
IV		Euclidean vector spaces	20			
	4	Vectors in 2 space, 3 space and n-space, Norm, dot product, and distance in \mathbb{R}^n , Orthogonality, the geometry of linear systems, cross product				

Textbook

1. H Anton, C Rorres. Elementary linear algebra, 11th Edition, John Wiley & Sons.

References

- 1. David Poole, Linear Algebra, a modern introduction, Brooks/Cole Cengage learning
- 2. Lee W.Johnson, R. Deanriess, Jimmy T. Arnold, Introduction to Linear Algebra, 5th edition, Addison Wisely

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Assignment (As)
CO 1	Understands system of linear equations	PSO1, 2, PO1	U	F,C	L,T	
CO 2	Perform various operations on matrices and determinants	PSO2, PO3, 4	An	F	L,T	
CO 3	Understand the concept of vectors in Euclidean spaces	PSO1, 3, PO2, 3	U,An	С	L,T	
CO 4	Apply matrices to solve system of linear equations	PSO1,	Ap	С	L,T	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	1					3							
CO2		2							1	3				
CO3	2		3					2	2					
CO4	2		3											

(--Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	√			
CO2				
CO3				
CO4				✓