

University of Kerala

Detailed Syllabus

Module	Unit	Contents	Hrs
I		System of linear equations and matrices	10
		Introduction to Systems of Linear Equations, Gaussian Elimination, Matrices and Matrix Operations, Inverses;Algebraic Properties of Matrices, [Section 1.1 to 1.4 of the Text]	
II		Further properties of matrices	15
	2	Elementary matrices and method for finding inverse, more on linear systems and invertible matrices, diagonal, triangular and symmetric matrices, matrix transformations [Section 1.5 to 1.8 of the Text]	
III		Determinants	15
	3	Determinants by cofactor expansion, evaluating determinants by row reduction, properties of determinants, Cramer's rule	

Module	Unit	Contents	Hrs
IV	Euclidean vector spaces	$\mathbf{2 0}$	
	4	Vectors in 2 space, 3 space and n-space, Norm, dot product, and distance in R^{n}, Orthogonality, the geometry of linear systems, cross product	

Textbook

1. H Anton, C Rorres. Elementary linear algebra, 11th Edition, John Wiley \& Sons.

References

1. David Poole, Linear Algebra, a modern introduction, Brooks/Cole Cengage learning
2. Lee W.Johnson, R. Deanriess, Jimmy T. Arnold, Introduction to Linear Algebra, $5^{\text {th }}$ edition, Addison Wisely

Course Outcomes

$\begin{aligned} & \text { CO } \\ & \text { No. } \end{aligned}$	Upon completion of the course the graduate will be able to	PO/PSO				
CO 1	Understands system of linear equations	$\begin{aligned} & \text { PSO1, } \\ & \text { 2, PO } \end{aligned}$	U	F,C	L,T	
CO 2	Perform various operations on matrices and determinants	$\begin{aligned} & \mathrm{PSO} 2, \\ & \mathrm{PO} 3,4 \end{aligned}$	An	F	L,T	
CO 3	Understand the concept of vectors in Euclidean spaces	$\begin{aligned} & \hline \text { PSO1, } \\ & 3, \\ & \mathrm{PO} 2,3 \end{aligned}$	U,An	C	L,T	
CO 4	Apply matrices to solve system of linear equations	$\begin{array}{\|l} \hline \text { PSO1, } \\ 3 \end{array}$	Ap	C	L,T	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create)
(F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	O	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { on } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { U } \\ & 0 \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & n \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & n \end{aligned}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	1					3							
CO 2		2							1	3				
CO3	2		3					2	2					
CO4	2		3											

(--Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			
CO2	\checkmark			
CO3	\checkmark			
CO4	\checkmark			\checkmark

