

University of Kerala

Discipline	CHEMISTRY				, Ċ
Course Code	UK1DSCCHE10)			
Course Title	INORGANIC CH	IEMISTRY	Ι		
Type of Course	DSC				
Semester	Ι				
Academic Level	100 – 199				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours/Week
	4	3 hours	-	2 hours	5
Pre-requisites	1. Higher secondar	ry level scier	ice knowledg	ge	
Course Summary	This course provid	des an under	rstanding of	atomic struct	ure, chemical
	bonding theories,	environment	al chemistry	focusing on a	ir, water, and
	soil pollution, and	basics of an	alytical cher	nistry includi	ng volumetric
	analysis techniq	ues. Throu	igh theoret	ical concept	ts, practical
	experiments, and	case studies	s, students g	gain knowled	ge and skills
	essential for addres	ssing comple	x issues in ch	nemistry and e	environmental
	science.				
ailed Syllabus:		S.			

Detailed Syllabus:

Module	Unit	Content	Hrs
		INORGANIC CHEMISTRY I	75
Ι	ATO	MIC STRUCTURE & PERIODICITY	9
	1	Introduction to structure of atom, Rutherford and Bohr model of atom	1
	2	Dual nature of electron-de Broglie equation-matter waves and electromagnetic waves. Experimental verification by Davis and Germer method, Heisenberg's uncertainty principle- expression and significance.	1
	3	Wave mechanical concept of the atom-Schrodinger equation and its significance (derivation not required.)	1
10	4	Quantum numbers- Pauli's Exclusion principle- Aufbau Principle- Hund's rule- Electronic configuration of atoms, classification of elements into s, p, d and f blocks	2
	5	Electronegativity- Pauling's scale, Mulliken and Allred- Rochow scale (including numerical problems),	2
	6	Effective nuclear charge, Slaters rule and its applications, diagonal relationship and anomalous behaviour of first element with other elements	2
II	CHEN	MICAL BONDING	15

		Overview of Chemical Bonding Theories:	
	7	- Definition of chemical bonding.	1
	/	- Importance of understanding chemical bonding in chemistry and related	1
		fields.	
		Valence Shell Electron Pair Repulsion (VSEPR) Theory	
		- Explanation of VSEPR theory.	
	0	- Predicting molecular geometry for molecules with bond pairs only.	2
	8	- Predicting molecular geometry for molecules with both bond pairs and	2
		lone pairs.	\mathbf{Q}
		- Application of VSEPR theory in predicting molecular properties.	
		Valence Bond Theory (VBT)	
		- Conditions of overlapping in VBT.	
	9	- Types of overlapping (sigma, pi, delta).	2
		- Hybridization in molecules: sp, sp2, sp3, sp3d, sp3d2.	
		- Limitations of VBT and its application to simple molecules.	
		Molecular Orbital (MO) Theory	
		- Introduction to MO theory.	
		- Linear Combination of Atomic Orbitals (LCAO) method.	
	10	- Formation of molecular orbitals in homonuclear diatomic molecules (C2,	2
	10	B2, N2, O2) and ions (O2+, O2-).	3
		- Formation of molecular orbitals in heteronuclear diatomic molecules	
		(HF, NO, CO).	
		- Calculations of bond order and its applications.	
		Ionic Bonding	
		- Explanation of ionic bonding, Ionic lattice energy of ionic compounds.	
		- Bond-Lande equation and Born-Haber cycle.	
		- Solvation energy and solubility of ionic solids.	
	11	- Covalent character of ionic bonds.	3
		- Fajan's rules and their applications.	
		- Polarity of covalent bonds.	
		- Dipole moment and percentage of ionic character.	
		- Relationship between dipole moment and molecular structure.	
		Metallic Bonding	
	12	- Overview of metallic bonding.	1
	12	- Free electron theory and band theory.	1
		- Explanation of conductance and malleability in metals.	
		Secondary Forces	
$\wedge \mathbf{O}$		- Explanation of hydrogen bonding.	
		- Inter and intramolecular hydrogen bonding.	
	13	- Applications of hydrogen bonding in biology, chemistry, and materials	2
		science.	_
		- Intermolecular interactions: ion-dipole interactions, van der Waals	
		torces (dispersion forces, dipole-dipole interactions, ion-induced dipole	
		interactions, dipole-induced dipole interactions).	

		Case studies and Problem-solving Session	
	14	Group problem-solving exercises related to molecular geometry,	1
	14	hybridization, bond calculations, and properties of molecules based on	1
		their bonding.	
	ENVI	RONMENTAL CHEMISTRY- AIR, WATER AND SOIL	Q
	POLI	LUTION	,
		Air pollution- Air pollution caused by fireworks, harmful effects of	
	15	fireworks, acid rain, greenhouse effect, smog-classic and photochemical $\sqrt{2}$	2
	15	smog Ozone layer depletion, ozone hole, protection of ozone umbrella.	
		Management of air pollution.	
		Water pollution: causes- heat, industrial waste, sewage water, detergents,	
		agricultural pollutants Treatment of industrial waste water- Activated	
тт	16	charcoal, synthetic resins, reverse osmosis and electro dialysis (Mention	3
111		Only), Quality of drinking water- Indian Standard and WHO standard-	
		Dissolved oxygen- BOD, COD.	
		Soil pollution: pesticides, fertilizers, Industrial waste, Plastic. Control of	
	17	Plastic threat- importance of Plastic identification codes and Plastic	2
	1/	recycling, use of biodegradable plastics (PGA, PLA and PHBV (mention	2
		only)	
		Control of pollution. Pollution Control Board – Duties and responsibilities	
	18	Mention environmental movements (Plachimada, Silent valley, movement	2
		against Endosulfan, Narmada Bachavo Andolan and Chipko movement)	
IV	BASI	CS OF ANALYTICAL CHEMISTRY	12
	19	Measurement of physical properties: International system of units and	2
	17	definitions, scientific notation, significant figures.	2
	20	Mole concept and molar mass, Concentration of solutions: Molarity,	2
	20	Normality, Molality, Mole fraction.	2
	21	Principles of volumetric analysis, primary standard, secondary standard,	1
	21	standard solution. Accuracy, precision, sensitivity, and selectivity	1
		Theory of Acid- Base titration: Acidimetry, Alkalimetry: Basic concepts,	
	22	principle and illustration with suitable example. Theory of acid-base	3
		indicators	
		Definition of Redox Reactions, Balancing of redox equations, Theory of	
	23	Redox titration: Titration of Fe ²⁺ with KMnO ₄ and K ₂ Cr ₂ O ₇ and theory of	2
		redox indicators.	
.1		Theory of complexometric titration: metal ion-EDTA titration. Theory of	_
	24	metallochromic indicators Precipitation titration: NaCl- AgNO ₃ titration	2
		and use of potassium chromate as adsorption indicator.	
V	VOL	UMETRIC ANALYSIS	30
	25	Section A: Volumetric Analysis (8 Experiments from Section A are	15
		compulsory)	
		1. Preparation of standard solutions.	
		2. Neutralization Titrations	
		a. Strong acid – Strong base	
		b. Strong acid – weak base	
		c. Weak acid – strong base.	

	 3. Redox Titrations - Permanganometry a. Estimation of oxalic acid. b. Estimation of Fe²⁺/FeSO₄.7H₂O/Mohr's salt. 	
26	Section B (Open ended: Any 3 experiments are to be conducted - May 15	5
	be selected from the list or the teacher can add related experiments)	
	1. Dichrometry	
	2. Iodometry & Iodimetry	
	3. Complexometry	
	4. Colorimetry	

References:

- 1. B.R. Puri L.R. Sharma, K.C. Kalia, *Principles of Inorganic Chemistry*, Milestone Publishers, New Delhi, 2010.
- 2. J.D. Lee, Concise Inorganic Chemistry, 5th Edn., Wiley India Pvt. Ltd., 2008.
- 3. R. Gopalan, V.Ramalingam, *Concise Coordination Chemistry*, 1st Edn., Vikas Publishing House, New Delhi, 2001.
- 4. S. Prakash, G. D. Tuli, S. K. Basu, R. D. Madan, *Advanced Inorganic Chemistry*, 5th Edn., Vol. I, S Chand, 2012.
- 5. G. S. Manku, *Theoretical Principles of Inorganic Chemistry*. McGraw-Hill Education; New edition (1 August 1982)
- 6. M.C. Day, J. Selbin, Theoretical Inorganic Chemistry, East West Press, New Delhi, 2002.
- 7. J. E. Huheey, E.A. Keitler, R. L. Keitler, *Inorganic Chemistry-Principles of Structure and Reactivity*, 4th Edn., Pearson Education, New Delhi,2013.
- 8. B.K. Sharma, *Industrial chemistry*, 11th Edn., Goel publishing House, Meerut, 2000.
- 9. M.N. Greenwood, A. Earnshaw, *Chemistry of elements*, 2nd Edn., Butterworth, 1997.
- 10. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, *Vogel's Text Book of Quantitative Chemical Analysis*, 6th Edn., Pearson Education, Noida, 2013.
- 11. D. A. Skoog, D. M. West, F. J. Holler, S. R. Crouch, *Fundamentals of Analytical Chemistry*, 8th Edn., Brooks/Cole, Thomson Learning, Inc., USA, 2004.

Further Reading

- 1. James E. House, Inorganic Chemistry, academic press, 2008.
- 2. W.U. Malik, G.D.Tuli, R.D. Madan, *Selected Topics in Inorganic Chemistry*, S. Chand and Co., New Delhi, 2010.
- 3. F.A. Cotton, G. Wilkinson, *Advanced Inorganic Chemistry*, 6th Edn., Wiley India Pvt. Ltd., New Delhi,2009.

Course Outcomes

No.	Upon completion of the course the graduate will be	Cognitive	PSO
	able to	Level	addressed

CO-1	Learn about quantum numbers, electron configurations, and periodic trends, enabling to classify elements and predict their properties accurately	R, U	PSO -1	
CO-2	Learn to predict molecular geometry, hybridization, and bond properties, enabling to analyze and interpret the behavior of molecules in various chemical contexts.	U, Ap	PSO -1,2,3	
CO-3	Apply the theories to real-world scenarios, developing critical thinking and analytical skills.	Ap	PSO -1,2,3	
CO-4	Gain an understanding of pollution and management strategies.	U	PSO -2,3,4	
CO-5	Learn about environmental movements aimed at addressing pollution issues, fostering awareness and promoting sustainable practices for a healthier environment.	Ap, An	PSO -2,3.4	
CO-6	Proficiency in the application of the mole concept and concentration terms, enabling to perform accurate and precise chemical analyses and interpret the results effectively.	Ар	PSO -1,2,3	
CO-7	Develop practical skills in chemical analysis and data interpretation, preparing for advanced laboratory work and real-world applications in analytical chemistry.	Ap, E	PSO - 1,2,3,4,5	

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: INORGANIC CHEMISTRY 1

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No. CO		PO/ PSO	Cognitive LevelKnowledge Category		Lecture (L)/ Tutorial (T)	Practical (P)
1	CO-1	PO – 1 PSO -1	R, U	F, C	L	-
2	CO-2	PO -1, 2, 3, 6 PSO -1,2,3	U, Ap	F, C	L	-

3	CO-3	PO – 1, 2, 6 PSO -1,2,3	Ар	F, C	L	-
4	CO-4	PO – 2,3,8 PSO -2,3,4	U	F, C	L	-
5	CO-5	PO – 1,2,3,5,8 PSO -2,3.4	Ap, An	F, C, M	L	
6	CO-6	PO – 1,2,6 PSO -1,2,3	Ap	F, C, M	L	B
7	CO-7	PO – 1,2,3,6 PSO -1,2,3,4,5	Ap, E	С, Р	-	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs:

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO 1	2	-	-	-	-	1		-	-	-	-	-	-
CO 2	2	2	3	-	-	1	ĺ	1	-	-	2	-	-
CO 3	2	3	3	-	-	1	1	-	-	-	2	-	-
CO 4	-	2	3	2	-	2	2	2	-	-	-	-	3
CO 5	-	2	3	2		1	2	1	-	2	-	-	2
CO 6	3	2	3		<u>y-</u>	1	2	-	-	-	3	-	-
CO 7	3	2	3	2	3	1	2	2	-	-	3	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics:

		Internal	Assignm	Project Evaluation	End Semester	
	CO 1		v v	Evaluation		
	CO 2	· √		\checkmark	\checkmark	
	CO 3	\checkmark			\checkmark	ċ
	CO 4	\checkmark	\checkmark		\checkmark	57
	CO 5	\checkmark		\checkmark	√ √	
	CO 6	\checkmark			\checkmark	
	CO 7	\checkmark			\checkmark	
Jor		UGR		STRX-DR		