

University of Kerala

Discipline	CHEMISTRY							
Course Code	UK1DSCCHE1	UK1DSCCHE104						
Course Title	GENERAL INC	ORGANIC (CHEMISTR	Y				
Type of Course	DSC							
Semester	1							
Academic Level	100 - 199							
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours/Week			
		per week	per week	per week				
	4	3 hours	-	2 hours	5			
Pre-requisites	1. Higher secondar	ry level scienc	e knowledge					
Course Summary	The course cov	vers atomic	structure, c	hemical bon	ding, co-ordination			
	chemistry and	secondar	y bond	forces, ana	alytical principles			
	including volume	etric analysis	and Nuclear	Chemistry.	Students learn about			
	quantum number	s, orbital con	cepts, electro	on configurati	on, bond energetics,			
	molecular geometry, and fundamentals of analytical chemistry. They also							
	gain a detailed understanding of the radioactivity and nuclear chemistry							
Detailed Syllabus:								

Detailed Syllabus:

Module Unit		Content	Hrs			
		GENERAL INORGANIC CHEMISTRY	75			
1	Atom	ic Structure, Chemical bonding and Secondary bond forces	21			
	1	Atomic spectrum of hydrogen - different series, Rydberg equation.	3			
		Bohr theory – postulates – statement of Bohr energy equation – derivation				
		of spectral frequency from Bohr equation				
	2	Schrodinger wave equation (mention only, no derivation), concept of	2			
		orbitals. Quantum numbers and their significances				
	3	Orbital wise electron configuration, energy sequence rule – Pauli's principle,	3			
		Hund's rule, Stability of filled and half-filled orbitals.				
	4	Electronic configuration of lanthanides and actinides, Lanthanide contraction	1			
	5	Energetics of ionic bond formation – Born-Haber cycle. Fajan's rule.	3			
	6	Hybridisation and shape of molecules with examples – sp (BeCl ₂), sp2(BF ₃)	3			
		, sp3 (CH ₄), sp3d(PCl ₅), sp3d2 (SF ₆) and sp3d3 (IF ₇)				
	7	VSEPR theory, regular and irregular geometry, H ₂ O, NH ₃ , XeF ₂ , XeF ₄ .	3			
		Hydrogen bond – inter and intra molecular – its consequences on boiling				
		point and volatility. Importance of hydrogen bonding in biomolecules –				
		Proteins and nucleic acids.				
	8	Ionic character of covalent bond – Polar and non-polar covalent compounds.	1			
	9	Secondary bond forces in molecules – Ion-dipole, dipole-dipole, ion-induced	2			
		dipole, dipole-induced dipole and induced dipole-induced dipole				

		interactions.				
II	Co-oi	dination chemistry	6			
	10	Types of ligands, Werner's coordination theory, Valence bond theory of	3			
		bonding in octahedral and tetrahedral complexes, Drawbacks of valence				
		bond theory.				
	12	Crystal field theory of octahedral and tetrahedral complexes, examples – high	3			
		and low spin complexes, magnetic properties, Application in qualitative and				
		quantitative analysis				
III	Analy	vtical Principles	9			
	12	Principles of volumetric analysis – primary standard – standard solutions	3			
		normality and molarity				
	13	Theory of acid-base titrations, permagnometric and dichrometric titrations,	3			
		iodometry and complexometric titrations.				
		Theory of acid-base indicator – redox indicators				
	14	Principles of colorimetry – estimation of biomolecules - glucose and	3			
		chlorophyll.				
IV	Radio	pactivity and Nuclear Chemistry	9			
	15	Radioactive decay series, Radioactive equilibrium, Average life, Half-life.	3			
		Detection of radio activity-Geiger Muller Counter, Wilson cloud chamber.				
	Units of radioactivity-Curie and Rutherford, Units of radiations.					
	16	Nuclear Chemistry-stability of nucleus, n/p ratio.	3			
		Artificial transmutation and radioactivity, mass defect, binding energy.				
	17	Applications of radio activity- in medicine and agriculture.	3			
		Biological effects of radiation, pathological and genetic damage.				
V	VOL	UMETRIC ANALYSIS	30			
	18	Section A: Volumetric Analysis (8 Experiments from Section A are	15			
		compulsory)				
		13. Preparation of standard solutions.				
		14. Neutralization Titrations				
		m. Strong acid – Strong base				
		n. Strong acid – weak base				
		0. Weak acid – strong base.				
		i Estimation of oxalic acid				
	i. Estimation of $e^{2t/Fe}SO_{1}$ 7H ₂ O/Mohr's salt					
	19	Section B (Open ended: Any 3 experiments are to be conducted - May be	15			
	17	selected from the list or the teacher can add related experiments)	10			
×		1. Dichrometry				
~ (2. Iodometry & Iodimetry				
		3. Complexometry				
		4. Colorimetry				

References

- 1. Bosolo and Johns, Co-ordination Chemistry.
- 2. Rochoco, Chemistry of Organometallics.
- 3. J.D. Lee, Concise Inorganic Chemistry.

- 4. Puri, Sharma and Kalia "Inorganic Chemistry"
- 5. A.D. Madan, Modern Inorganic Chemistry
- 6. A.I.Vogel, A text book of Quantitative analysis"
- 7. Day & Underwood, Quantitative analysis: laboratory manual":

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Discuss the rules for filling electrons in atomic orbitals	U	PSO-1
CO-2	Discuss theories of chemical bonding and their limitations	U	PSO-1
CO3	Predict geometry of molecules from the type of hybridisation.	Ар	PSO-1,2,3
CO 4	Discuss the important theories of coordination compounds	U	PSO-1
CO 5	Critically select suitable indicators for acid base and redox titrations	Е	PSO-1,2,3
CO 6	Apply the basic principles in quantitative analysis	Ар	PSO-1,2,3,4,5

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create Name of the Course: GENERAL INORGANIC CHEMISTRY

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	СО	PO/ PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
1	CO-1	PO-1,6 PSO-1	U	F, C	L	-
2	CO-2	PO-1,6 PSO-1	U	F, C	L	-
3	CO3	PO-1,6 PSO-1,2,3	Ар	F, C, P	L	-
4	CO 4	PO-1,6 PSO-1	U	F, C	L	-
5	CO 5	PO-1,6	Е	F, C, P	L	-

		PSO-1,2,3				
6	CO 6	PO-1,2,6 PSO-1,2,3,4,5	Ар	F, C, P	L	Р

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs:

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8
CO 1	3	-	-	-	-	2	-	-	-	×	2	-	-
CO 2	3	-	-	-	-	2	-	-			2	-	-
CO 3	3	2	2	-	-	2	-	-		-	2	-	-
CO 4	3	-	-	-	-	2	-	-	P	-	2	-	-
CO 5	2	2	2	-	-	2	-			-	2	-	1
CO 6	2	2	2	2	3	2	2		-	-	2	-	I

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics:

	T.	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
\mathbf{A}	CO 1	\checkmark	\checkmark		\checkmark
	CO 2	\checkmark	\checkmark		\checkmark
	CO 3	\checkmark		\checkmark	\checkmark
	CO 4	\checkmark	\checkmark		\checkmark
	CO 5	\checkmark			\checkmark
	CO 6	\checkmark			\checkmark