

University of Kerala

Discipline	CHEMISTRY									
Course Code	UK1DSCCHE101									
Course Title	FUNDAMENTA	FUNDAMENTALS OF CHEMISTRY I								
Type of Course	DSC				8					
Semester	Ι			1						
Academic Level	100 - 199									
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours/Week					
	4	3 hours	-	2 hours	5					
Pre-requisites	1. Higher secondary	v level science	knowledge							
Course Summary	The course covers	fundamenta	l principles i	n the periodic	classification					
	of elements, chem	ical bonding	, thermodyna	amics and ther	mochemistry,					
	analytical princip	oles, and la	b safety, p	roviding stud	dents with a					
	comprehensive un	derstanding	of key conc	epts in chemi	stry. Through					
	both theoretical lea	arning and ha	inds-on pract	icals in volum	etric analysis,					
	students develop				stry and gain					
	practical experience in experimental techniques.									
tailed Syllabus:		5								
•		X								

Detailed Syllabus:

Module	Unit	Contents FUNDAMENTALS OF CHEMISTRY I	Hrs 75
Ι	PERI	ODIC CLASSIFICATION OF ELEMENTS	9
	1	Quantum numbers and their significance, Concept of orbitals.	2
	2	Orbital wise electron configuration, energy sequence rule – Pauli's principle, Hund's rule, stability of filled and half-filled orbitals	2
	3	Electronic configuration and classification of elements in to s,p,d and f blocks.	1
1	4	Periodic properties, Ionisation energy, Electronegativity and Electron affinity. Diagonal relationship.	2
50	5	Important characteristics of representative elements: valency, oxidation states, ionic and covalent bond formation Important characteristics of transition elements: variable valency and oxidation states, formation of Complex compounds.	2
II	CHE	MICAL BONDING	9
	6	Energetic of bond formation – Types of Chemical bonds – Energetics of ionic bond formation – Lattice energy – Born Haber Cycle - Fajan's rules.	2

	7	Polarity of covalent bond its relation with electronegativity Electro	2
		negativity scales – Paulings and Mullikan's approaches, factors	
		influencing polarity Dipole moment – its relation to geometry.	
	8	Hydrogen bond – inter and intra molecular – its consequences on	1
		boiling point, volatility and solubility.	
	9	Concept of Hybridisation– sp, sp ² , sp ³ , dsp ² , dsp ³ , sp ³ d ² , and sp ³ d ³	2
		with examples Explanation of bond angle in water and ammonia-	
		VSEPR theory, geometry of molecules with bond pairs of electrons,	S
		bond pairs and lone pairs of electrons, limitations of VSEPR Theory.	\mathbf{X}
	10	A brief review of molecular orbital approach, LCAO method – bond	2
		order, bond distance and stability of O_2 , O_2^{2+} , O_2^{2-} , NO, NO ⁺ , CO and	
		HF.	
III	THE	RMODYNAMICS AND THERMOCHEMISTRY	18
	11	First law of thermodynamics, mathematical form, intrinsic energy,	3
		enthalpy, reversible, process and maximum work, work of expansion	
		of an ideal gas in reversible isothermal process.	
	12	Heat capacity of gases at constant volume and constant pressure,	2
		derivation of $C_P - C_V = R$.	
	13	Second law of thermodynamics, entropy and free energies Significance	4
		of Δ G, Δ H and available work Criteria of equilibrium, and	
		spontaneity on the basis of entropy and free energy, Gibbs - Helmholtz	
		equation.	
	14	Enthalpies of formation, combustion, neutralization, solution and	2
		hydration	
	15	Relation between heat of reaction at constant volume and constant	3
		pressure Variation of heat of reaction with temperature- Kirchoff's	
		equation	
	16	Hess's law and application – bond dissociation energies and bond	4
		energies of different types of bonds, their calculation and enthalpies of	
		reaction	
IV		LYTICAL PRINCIPLES & LAB SAFETY	9
	17	Analytical methods in Chemistry – Principles of volumetric analysis,	2
		primary standard, standard solution, Calculation of normality, molality	
		and molarity of solutions	
	18	Theory of acid - base titrations: Strong acid - Strong Base, Strong acid	2
1		- weak base, Weak acid Strong base and weak acid-strong base	
		(Explanation with titration curves) Redox titrations:	
10		Permanganometry- Fe^{2+} and KMnO ₄ and dichrometry - Fe^{2+} and	
	10	K ₂ Cr ₂ O ₇ , Theory of acid – base and redox indicators.	2
	19	Inorganic qualitative analysis, common ion effect- solubility product-	2
		precipitation and inter group separation of cations. Salting out process	
	20	Chromatography- principle and applications of paper and thin layer	2
	01	chromatography,	1
X 7	21	Lab safety - Risk, Hazard, Chemical Hazard.	1
V	VOL	UMETRIC ANALYSIS	30

22	Section A: Volumetric Analysis (8 Experiments from Section A are	15
	compulsory)	
	4. Preparation of standard solutions.	
	5. Neutralization Titrations	
	d. Strong acid – Strong base	
	e. Strong acid – weak base	
	f. Weak acid – strong base.	
	6. Redox Titrations - Permanganometry	ŝ
	c. Estimation of oxalic acid.	$\langle \gamma \rangle$
	d. Estimation of Fe ^{2+/} FeSO ₄ .7H ₂ O/Mohr's salt.	
23	Section B (Open ended: Any 3 experiments are to be conducted -	15
	May be selected from the list or the teacher can add related	
	experiments)	
	1. Dichrometry	
	2. Iodometry & Iodimetry	
	3. Complexometry	
	4. Colorimetry	

References

- 1. B.R Puri, L R Sharma K C Kalia, *Principles of Inorganic Chemistry*, Sobhanlal Nagin Chand & Co. New Delhi
- 2. Manas chanda, *Atomic structure and Chemical bonding in molecular spectroscopy*, Tata Mc Graw Hill.
- 3. S Glasstone, Thermodynamics for Chemists, Affiliated Eat West Publishers
- 4. J D Lee, Concise Inorganic Chemistry, ELBS.
- 5. R P Rastogi and R R Misra, An Introduction to Thermodynamics.
- 6. D.A Skoog, D M West, F J, Holler, S R Crouch, *Fundamentals of Analytical Chemistry*, 8th Edn., Brookes/Cole, Thomson Learning, Inc, USA, 2004.
- 7. Day and Underwood, *Quantitative analysis: Laboratory manual*.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Discuss the rules for filling electrons in atomic orbitals	U	PSO - 1
CO-2	Discuss theories of chemical bonding and their limitations	U	PSO - 1
CO3	Predict geometry of molecules from the type of hybridisation.	Ар	PSO – 1,2,3

CO 4	Recognise fundamentals of thermodynamics and the predict spontaneity of reactions.	Ар	PSO – 1,2,3
CO 5	Critically select suitable indicators for acid base and redox titrations	E	PSO – 1,2,3
CO 6	Apply the basic principles in qualitative analysis and identify cation and anion	Ар	PSO – 1,2,3,4

Name of the Course: FUNDAMENTALS OF CHEMISTRY I

Credits: 3:0:1 (Lecture:Tutorial:Practical)

	Identify	cation and amon									
Name	R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create Name of the Course: FUNDAMENTALS OF CHEMISTRY I Credits: 3:0:1 (Lecture:Tutorial:Practical)										
CO No.	СО	PO/ PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)					
1	CO-1	PO- 1,6 PSO - 1	U	F, C	L	-					
2	CO-2	PO – 1,6 PSO - 1	U	F, C	L	-					
3	CO3	PO-1,2,6 PSO – 1,2,3	Ap	F, C	L	-					
4	CO 4	PO-1,6 PSO – 1,2,3	Ар	F, C	L	-					
5	CO 5	PO-1,6 PSO – 1,2,3	Е	F, C	L	-					
6	CO 6	PO-1,2,6 PSO – 1,2,3,4	Ар	F, C, P	-	Р					

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs:

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO 1	2	-	-	-	-	1	-	-	-	-	2	-	-
CO 2	2	-	-	-	-	1	-	-	-	-	2	-	-
CO 3	2	1	3	-	-	1	1	_	_	_	2	-	-

CO 4	2	3	2	-	-	1	-	-	-	-	2	-	-
CO 5	2	3	3	-	-	1	-	-	-	-	2	-	-
CO 6	1	2	3	2	-	1	2	-	-	-	2	-	-

Correlation Levels:

Level	Correlation	
-	Nil	
1	Slightly / Low	
2	Moderate / Medium	
3	Substantial / High	
		_
		C

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

TOF BAD

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark		\checkmark	\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark			\checkmark
CO 5	\checkmark			\checkmark
CO 6				\checkmark