

University of Kerala

Discipline	Mathematics								
Course Code	UK1DSCMAT102								
Course Title	Differentiation, Sequence and Series								
Type of Course	DSC	DSC							
Semester	Ι	Ι							
Academic Level	100-199								
Course Details	Credit Lecture Tutori			Practical	Total				
		per week	per week	Hours per week					
	4 4 4								
Pre-requisites	1. Functions and limits 2. Arithmetic and geometric progression								
Course Summary	This course provides a detailed study of differentiation and								
	convergence of sequence and series								

Detailed Syllabus

Module	Unit Contents								
Ι	Differentiation								
	1	1 Tangent lines and limits (review only), One sided limits							
		(review only), Limits at infinity, Infinite limits, Continuity							
		(up to continuity of composite functions) (Chapter 1							
		Sections 1.1, 1.3, 1.4 and 1.5 of Text 1)							
	2	Tangent lines and rate of change, The derivative function							
		(Chapter 2 Sections 2.1, 2.2 of Text 1)							
	3	Introduction to Techniques of Differentiation, The Product							
		and Quotient Rules, Derivatives of Trigonometric Functions							
		(review only)							
	4	The Chain Rule, Implicit Differentiation (Chapter 2 Sections							
		2.6, 2.7 of Text 1)							
II	D	Differentiation of exponential and logarithmic functions 1							
	5	Exponential and logarithmic functions (review only)							
		(Chapter 6 Section 6.1 of Text [1])							

Module	Unit	Contents							
	6	Derivatives involving Exponential and logarithmic functions							
		(Chapter 6 Section 6.2 of Text [1])							
	7	L'Hôpital's rule (Chapter 6 Section 6.5 of Text [1])							
III		Sequences and Series							
	8	Sequences, their limits, convergence and related theorems							
		(without proof). (Chapter 9 Sections 9.1, 9.2 of Text 1)							
	9	Infinite series, their convergence and sums, geometric Series							
		and harmonic series (Chapter 9 Section 9.3 of Text [1])							
IV		Convergence and Divergence tests							
	10	Algebraic properties of infinite series, Integral test, p-series							
		(Chapter 9 Section 9.4 of Text [1] (avoid proofs of theorems))							
	11	Comparison test, limit comparison test, Ratio test, Root							
		test(Chapter 9 Section 9.5 of Text [1])							
	12	Alternating Series - Absolute and conditional Convergence,							
		Ratio test for absolute convergence, Power series, Maclaurin							
		and Taylor Polynomials Maclaurin and Taylor series							
		(Chapter 9 Sections 9.6, 9.7 of Text [1] (avoid proofs of							
		theorems))							

Textbooks

1. Howard Anton, Irl Bivens, Stephens Davis, Calculus 10th Edition, Wiley, 2012.

References

- 1. Joel Hass, Maurice D. Weir, *Thomas Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 2. Mary L Boas, Mathematical Methods in Physical Science, 3rd Edition, 2006.
- 3. K. F. Riley, .M. P. Hobson, S. J. Bence, *Mathematical Methods for Physics and Engineering*, Third Edition, Cambridge University Press, 2006.
- 4. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2008.
- 5. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the fundamental concepts of Differentiation	PSO1, 2, PO1, 3, 6, 7, 8	U	F,C	L	
CO 2	Explore Differentiation techniques to functions involving vectors and matrices	PSO 2,4, PO1, 3, 6, 7, 8	An, C	С, М	L	
CO 3	Develop problem-solving skills through the application of differentiation concepts and systems of linear equations	PSO 2,3, PO1, 3, 6, 7, 8	An, C	Р, М	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	P01	P02	PO3	P04	P05	P06	PO7	PO8
CO1	3	1	2	2	3	3	3	-	1	-	-	2	1	1
CO2	1	3	1	2	1	1	1	1	3	-	-	2	1	1
CO3	1	3	2	3	2	3	1	3	3	-	-	3	1	1
(N	:11 1	Clia	htly/	Low	21	(ada	matal	Mad	:	2 6	ubate	ontio	1/11:	-h)

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam

- Programming Assignments
- End Semester Exam

Mapping of COs to Assessment Rubrics

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		~