14. DETAILED SYLLABUS

University of Kerala

Discipline	PHYSICS						
Course Code	UK1DSCPHY100						
Course Title	FOUNDATION COURSE IN PHYSICS-I						
Type of Course	DSC						
Semester	Ι						
Academic Level	100 - 199						
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours/Week		
	4	3 Hrs	-	2 Hrs	5 Hrs		
Pre-requisites	-						
Course Summary	This course discusses basic foundation concepts in Physics. Simple mathematical tools required for understanding Physical concepts are discussed in the first module. Motion of objects is explained on the basis of Newton's laws followed by the discussion on work and energy. Study on rotational dynamics reveals the concept of angular momentum and its significance in rigid bodies. The discussion on oscillations will help to understand simple harmonic motion and its applications in pendulum.						

BOOKS FOR STUDY:

- 1. Introduction to Electrodynamics, David J Griffiths, Prentice Hall
- Sear and Zemansky's University Physics With Modern Physics, Hugh D Young, Roger A Freedman, Addison -Wesley, 13TH EDITION, 2012.
- Introduction to Mechanics, Daniel Kleppner and Robert Kolenkow Second Edition, Mc Graw Hill Education, 2017.
- 4. Mechanics, J C Upadhyaya, Ramprasad Publications
- Principles of Physics 10th Edition, Robert Resnick, Jearl Walker, David Halliday, Wiley, 2014.

BOOKS FOR REFERENCE:

- Mechanics: H. S. Hans and S. P. Puri, TMH, 2ndEdn. 1.
- Properties of matter: Brijlal and Subramaniam, S. Chand & Co.,2004 2.
- Principles of Physics: P.V. Naik, PHI, 3.

DETAILED SYLLABUS: THEORY T

Г

Module	Unit	Content	Hrs	CO No
		LANGUAGE OF PHYSICS		
		9		
•	1	Vector algebra - vector operations, component form, triple products,	3	1
I	2	Gradient, the operator ∇ , the divergence, the curl, product rules	4	1
	3	Integral calculus: line, surface and volume integrals	1	1
	4	Gauss's divergence theorem and Stokes's theorem (statements only)	1	1
		LAWS OF MOTION (Book 2: Chapter 4 & 8)	9	
	5	Newton's first law, law of inertia - Inertial frame of reference	2	2
-	6	Newton's second law- Mass and Force	1	2
Π	7	Mass and weight- Variation of g with location, measuring mass and weight	2	3,5
	8	Newton's third law	1	2
_	9	Momentum and impulse - Newton's second law in terms of Momentum, The impulse-momentum theorem	2	2
	D	YNAMICS OF MOTION- WORK AND ENERGY (Book 2: Chapter 6 & 7)	9	
•	10	Work, Kinetic energy and work - energy theorem	1	2,5
III	11	Work and energy with varying forces- Straight line motion Motion along a curve, Power	2	2,5
	12	Gravitational Potential energy, elastic Potential energy	3	2

	1			
	13	Conservative and non-conservative forces, Law of Conservation of energy	2	3,5
	14	Force and potential energy	1	2,5
		DYNAMICS OF ROTATION AND ANGULAR		
		MOMENTUM	9	
		(Book 2, Book 3 and Book 4)		
•	15	Torque, Angular acceleration, Rigid body rotation about a moving axis	4	2
JV	16	Combined translation and rotation-energy relations, rolling without slipping. Rolling friction, work and power in rotational motion (Book2: Chapter 10)	4	4,5
	17	Angular momentum of a particle, fixed axis rotation- Moment of Inertia (ring, Disc, Stick), The Parallel axis theorem, dynamics of fixed axis rotation	3	4,5
		9		
V*	18	Simple Harmonic motion, Energy in Simple Harmonicmotion(Book6, Chapter 15)	3	6
	19	mass on a spring - oscillation of two particles connectedby a spring(Book 2, Chapter 9)	2	6
	20	compound pendulum - interchange ability of suspension and oscillation points-collinear points-conditions for maximum and minimum periods (Book 2, Chapter 9)	4	6

DETAILED SYLLABUS: PRACTICALS

Part A – At least 5 Experiments to be performed				
SI No	Name of Experiment			
1	Compound Bar Pendulum – Symmetric	6		
2	Compound Bar Pendulum – Asymmetric.	6		
3	Determination of moment of inertia of fly wheel	4, 6		
4	Helical spring- Spring constant	2, 6		

5	Show that the period of oscillation of a simple pendulum is independent of the mass of the bob used.	6
6	Establish the relationship between length and period of a simple pendulum.	6
	Part B* – At least One Experiment to be performed	
7	Inclined plane - determine the downward force, along an inclined plane	1, 2
8	Concurrent forces - determination of unknown mass	1, 2
9	Concurrent forces - parallelogram law verification	1, 2

COURSE OUTCOMES

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Discuss the basic mathematical tools used to manipulate vectors and associated problems	U, Ap	1, 2, 4
CO-2	Recall Newton's laws of motion and describe basic concepts related to objects in motion like momentum, inertia, work, energy and simple harmonic motion.	R, U	1, 2
со-3	Use the basic ideas of Newtonian mechanics to evaluate dynamics of objects in detail.	R, U	1, 2
CO-4	Describe the concept of moment of inertia and use it to objects having different shapes	R, U, Ap	1, 2, 7
CO 5	Solve numerical problems related to motion of objects	U, Ap	1, 2
CO-6	Relate the concept of simple harmonic motion with periodic movement of objects	U, Ap	1, 2, 7
R-Reme	mber, U-Understand, Ap-Apply, An-Analyse, E-Evaluate	, C-Create	

Name of the Course: FOUNDATION COURSE IN PHYSICS-I

Credits: 3:0:1 (Lecture:Tutorial:Practical)

CO No.	со	PSO / PO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
CO-1	Discuss the basic mathematical tools used to manipulate vectors and associated problems	PSO 1, 2, 4/ PO 1, 2	U, Ap	F, C	L	Ρ
CO-2	Recall Newton's laws of motion and describe basic concepts related to objects in motion like momentum, inertia, work, energy and simple harmonic motion.	PSO 1, 2/ PO 1, 2	R, U	F, C	L	_
CO-3	Use the basic ideas of Newtonian mechanics to evaluate dynamics of objects in detail.	PSO 1, 2/ PO 1, 2	R, U	F, C	L	-
CO-4	Describe the concept of moment of inertia and use it to objects having different shapes	PSO 1, 2/ PO 1, 2	R, U, Ap	F, C, P	L	Р
CO-5	Solve numerical problems related to motion of objects	PSO 1, 2, 7/ PO 1, 2	U, Ap	F, C	L	-

Š

FYUGP-Physics Syllabus 2024

	Relate the concept of	PSO 1, 2,				
	simple harmonic	7/	U An	FCP	Т	Р
CO-6	motion with periodic	PO 1, 2,	0, Ap	г, с, г	L	
	movement of objects	3, 6				
1						

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8
CO-1	3	2	-	1	-	-	-	1	3	-	-	-	-	-	-
CO-2	3	1	-	-	-	-	-	2	2	-	-	-	-	-	-
CO-3	3	2	-	-	-	-	-	2	3	-	-	-	-	-	-
CO-4	2	1	-	-	-	-	-	1	2	-	-	-	-	-	-
CO-5	2	3	-	-	-	-	1	2	3	-	-	-	-	-	-
CO-6	2	2	-	-	-	-	2	3	2	1	-	-	2	-	-
		-													

Correlation Levels:

Level	-	1	2	3
Correlation	Nil	Slightly / Low	Moderate / Medium	Substantial / High
a standards in				

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

CO No	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO-1	V	-	-	1
со-2	√	-	-	1
со-3	√	-	-	J
CO-4	1	1	-	J
CO-5	1	-	-	1
CO-6	1	1	-	-

Mapping of COs to Assessment Rubrics :