

Discipline	CHEMISTRY								
Course Code	UK1DSCCHE102								
Course Title	CHEMICAL FI	CHEMICAL FRONTIERS – BONDING TO							
	ENVIRONMEN	TAL PERS	PECTIVES						
Type of Course	DSC								
Semester	1								
Academic Level	100 - 199				<i>'</i>				
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours/Week				
	4	3 hours	- (2 hours	5				
Pre-requisites	 Higher se 	condary leve	l science kno	wledge					
Course Summary	The course cove	rs the period	dic classifica	tion of eleme	nts, chemical				
	bonding, organo	metallic che	emistry, env	rironmental p	ollution, and				
	analytical princip	ples, includi	ng volumetr	ic analysis. S	tudents learn				
	about quantum nu	umbers, orbit	al concepts,	electron config	guration, bond				
	energetics, molec	cular geometr	ry, and vario	us analytical t	echniques for				
	qualitative and qualitative	uantitative ar	nalysis. They	also gain an	understanding				
	of the biologica	al, environn	nental, and	industrial ap	plications of				
	chemistry.	7							

Detailed Syllabus:

Module	Unit	CHEMICAL EDON'THERE PONIDING TO ENVIRONMENTAL	Hrs						
		CHEMICAL FRONTIERS – BONDING TO ENVIRONMENTAL PERSPECTIVES	75						
1	PERIODIC CLASSIFICATION OF ELEMENTS								
	1	Quantum numbers and their significance, Concept of orbitals.	2						
	2	Orbital wise electron configuration, energy sequence rule – Pauli's	2						
		principle, Hund's rule, stability of filled and half-filled orbitals.							
	3	Electronic configuration and classification of elements in to s,p,d and f	1						
		blocks							
100	4	Periodic properties, Ionisation energy, Electronegativity and Electron affinity. Diagonal relationship.	2						
	5	Important characteristics of representative elements: valency, oxidation states, ionic and covalent bond formation Important characteristics of	2						
		transition elements: variable valency and oxidation states, formation of							
		Complex compounds.							
II	CHE	MICAL BONDING	9						

	6	Energetic of bond formation – Types of Chemical bonds – Energetics of ionic bond formation – Lattice energy – Born Haber Cycle - Fajan's rules.	2
	7	Polarity of covalent bond its relation with electronegativity Electro negativity scales – Paulings and Mullikan's approaches, factors influencing polarity Dipole moment – its relation to geometry.	2
	8	Hydrogen bond – inter and intra molecular – its consequences on boiling point, volatility and solubility.	1
	9	Concept of Hybridisation—sp, sp ² , sp ³ , dsp ² , dsp ³ , sp ³ d ² , and sp ³ d ³ with examples Explanation of bond angle in water and ammonia - VSEPR theory, geometry of molecules with bond pairs of electrons, bond pairs and lone pairs of electrons, limitations of VSEPR Theory.	2
	10	A brief review of molecular orbital approach, LCAO method – bond order, bond distance and stability of O ₂ , O ₂ ²⁺ , O ₂ ²⁻ , NO, NO ⁺ ,CO and HF.	2
III	ORG	ANOMETALLICS	9
	11	Definition and classification, Organo metallic compounds of Mg, Sn, Li, Hg, Fe and their synthesis, applications	3
	12	Biological and environmental aspects of organic compounds – organometallic compounds in medicines – organomercury, organoboron, organosilicon and organo arsenic compounds	2
	13	Outline of preparation and uses Antitumour drugs, silylated derivatives of bioactive organic compounds in agriculture and horticulture	3
	14	Environmental aspects of Organometallic compounds	1
IV		RONMENTAL POLLUTION AND ANALYTICAL PRINCIPLES	18
	15	Air pollution: Composition of air, major causes of air pollution	2
	16	Pollutants in air-carbon monoxide, carbon dioxide, oxides of Nitrogen and sulphur, chlorofluro carbons- effect of using refrigerators and air conditioners, Particulate matter- Acid rain, Greenhouse effect, ozone layer and its depletion	2
	17	Water pollution: causes- heat, industrial waste, sewage water, detergents, agricultural pollutants	2
	18	Treatment of industrial waste water- Activated charcoal, Reverse osmosis Quality of drinking water- Indian Standard and WHO standard- Dissolved oxygen- BOD, COD	2
	19	Soil pollution: pesticides, fertilizers, Industrial waste, Plastic.	1
10	20	Principles of volumetric analysis- primary standard – standard solutions - normality and molarity	2
	21	Theory of acid - base titrations, permanganometric and dichrometric titrations, iodometric and complexometric titrations	2
	22	Theory of acid – base and redox indicators	2
	23	Beer- Lambert law- Principles of colorimetry – Estimation of Iron and phosphate	2
	24	Lab safety - Risk, Hazard, Chemical Hazard.	1
\mathbf{V}	VOL	UMETRIC ANALYSIS	30

25	Section A: Volumetric Analysis (8 Experiments from Section A are	15
	compulsory)	
	7. Preparation of standard solutions.	
	8. Neutralization Titrations	
	g. Strong acid – Strong base	
	h. Strong acid – weak base	
	i. Weak acid – strong base.	
	9. Redox Titrations - Permanganometry	G
	e. Estimation of oxalic acid.	
	f. Estimation of Fe ^{2+/} FeSO ₄ .7H ₂ O/Mohr's salt.	
26	Section B (Open ended: Any 3 experiments are to be conducted -	15
	May be selected from the list or the teacher can add related	
	experiments)	
	1. Dichrometry	
	2. Iodometry & Iodimetry	
	3. Complexometry	
	4. Colorimetry	

References

- 1. B.R Puri, L R Sharma K C Kalia, Principles of Inorganic Chemistry, Sobhanlal Nagin Chand & Co. New Delhi
- 2. Manas chanda, Atomic structure and Chemical bonding in molecular Spectroscopy, Tata Mc Graw Hill.
- 3. Malik, Tuli, Madan, Selected Topics in Inorganic chemistry, S Chand.
- 4. J D Lee, Concise Inorganic Chemistry, ELBS
- 5. D.A Skoog, D M West, F J, Holler, S R Crouch, Fundamentals of Analytical Chemistry,8th Edn., Brookes/Cole, Thomson Learning, Inc, USA, 2004.
- 6. A. I. Vogel, Quantitative Analysis.
- 7. Day and Underwood, Quantitative analysis: Laboratory manual.

Course Outcomes

No.	Upon completion of the course the graduate will be able to	Cognitive Level	PSO addressed
CO-1	Discuss the rules for filling electrons in atomic orbitals	U	PSO-1
CO-2	Discuss theories of chemical bonding and their limitations	U	PSO-1,2
CO3	Predict geometry of molecules from the type of hybridisation.	Ap	PSO-1,2,3
CO 4	Discuss the applications of organometallics.	U	PSO-1,2,3

CO 5	Critically select suitable indicators for acid base and redox titrations	E	PSO-1,2,3
CO 6	Apply the basic principles in quantitative analysis	Ap	PSO-1,2,3,4
CO 7	Discuss the factors affecting environmental pollution	U	PSO-1,2,3,4,5

R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create

Name of the Course: CHEMICAL FRONTIERS – BONDING TO ENVIRONMENTAL PERSPECTIVES

Credits: 3:0:1 (Lecture: Tutorial: Practical)

CO No.	СО	PO/ PSO	Cognitive Level	Knowledge Category	Lecture (L)/ Tutorial (T)	Practical (P)
1	CO-1	PO-1,6 PSO-1	U	F, C	L	-
2	CO-2	PO-1,6 PSO-1,2	U	F, C	L	-
3	CO3	PO-1,3,6 PSO-1,2,3	Ap	F, C, P	L	-
4	CO 4	PO-1,6 PSO-1,2,3	U	F, C	L	-
5	CO 5	PO-1,2,3,6 PSO-1,2,3	E	F, C, P	-	Р
6	CO 6	PO-1,2,6 PSO-1,2,3,4	Ap	F, C, P	-	P
7	CO 7	PO-1,6 PSO-1,2,3,4,5	U	F, C, M	L	-

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with PSOs and POs:

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO 1	2	-	-	ı	ı	1	ı	ı	1	ı	2	ı	-
CO 2	2	1	-	-	-	1	-	-	-	-	2	-	-
CO 3	2	2	3	-	-	1	-	1	-	-	2	-	-

CO 4	2	1	3	ı	-	1	-	-	-	ı	2	ı	-
CO 5	2	2	3	1	-	1	1	1	-	1	2	1	-
CO 6	2	2	3	3	-	1	1	1	-	ı	2	ı	-
CO 7	2	2	2	3	2	1	-	-	-	-	2	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	✓			√
CO 2	✓	1		✓
CO 3	✓	\ \ \		✓
CO 4	√	✓	√	✓
CO 5	~			√
CO 6			√	√