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ABSTRACT

Through this project, we present a concise study on a regular semigroup. A regular
semigroup is a semigroup S in which every element is regular. That is for each a
in S there exist an element x in S suchthat axa = a. We analyse the properties
related to regular semigroup including treatment of equivalence, congruence and
also discuss about structure of regular semigroup and its some classes. Regular
semigroups are one of the most studied class of semigroup and their structure is

particularly amenable to study via Green’s relations.
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Introduction

Regular semigroup are one of the most studied classes of semigroup and their
structure is amenable to study via Green’s relations.Regular semigroups were in-
troduced by J. A Green in his influential 1951 paper ”On the structure of semi-
groups”; this was also the paper in which Green’s relation were introduced. The

concept of regularity in a semigroup was adopted by John von Neumann.

Through this project we discuss about the regular semigroup and its general

properties, structure and some class of regular semigroups.

The first chapter introduced the basic concepts of semigroup and Green’s rela-

tion in semigroup.

The second chapter introduces the regular semigroup and its general properties
and also discuss the representation of regular semigroup and the concept of strict

regular semigroup.

The third chapter introduces a class of regular semigroup named as completely
regular semigroup which deals with Clifford decomposition, Clifford semigroup
and Band.The fourth chapter discuss other classes of regular semigroups ; Locally
inverse, Orthodox, Semiband and its properties. This gives a deep information

about regular semigroup.



Chapter 1

Preliminary

In this chapter we give certain basic definitions and examples that we need in the

sequel. For the notations and terminologies we, [2],[3],[4]

1.1  Semigroup

Definition 1.1.1. A binary operation on set S is a map - : S x S — S. This
operation is associative if x - (y-z) = (x-y) -z for all z,y,z € S. A semigroup is

nonempty set equipped with an associative binary operation denoted by (.9, .).

Definition 1.1.2. A semigroup S is said to be a commutative semigroup, xy = yx

for all z,ye S.

Definition 1.1.3. If S is a semigroup contains an element 1 such that

le=xz=ua.l forallz €S, then 1 is called identity of S.
Note 1.1.4. The semigroup S with identity 1 is called monoid.
Result 1.1.5. Fvery group is a monoid

Definition 1.1.6. If a semigroup S with at least two elements contains an element
0 such that 0z = 0 = 20 for all x € S, then we say 0 is a zero of S and S is called

a semigroup with zero.
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Note 1.1.7. If S is a Semigroup without 0 then we adjoint an extra element 0 to
S we define an operations, 0z = 0 = 0 and 0.0 = 0,for all x € S. Then S U {0}

s a semigroup with 0 we define

G0 S if S has already 0

SU{0} otherwise

Note 1.1.8. If S is a semigroup without identity then we adjoint an extra element
1 to S form a monoid we define, -1 =1-x=x forallx € S and1-1=1. Then

S U{1} is a monoid and denote

g S if S has already identity
SU{l} otherwise

Theorem 1.1.9. A semigroup with zero 0 then 0 is unique.

Note 1.1.10. Letx # ¢ and T, ={ f : f : * — x} then T, is a monoid, where
binary operation is composition if mapping. That is if f,g€ T, fg : ©* — x by

x(fg) = (zf)g, then semigroup T, is called the full transformation semigroup.

Definition 1.1.11. Let S be a semigroup and T C S then T is said to be a
subsemigroup of S if T is closed under multiplication, that is for all

abeT =abeT

Definition 1.1.12. If S is a semigroup containing an element e such that e* = e,

then {e} is subsemigroup of S and e is called idempotent of S.

Definition 1.1.13. Let S be a semigroup and A C S then A is said to be a left
ideal [right ideal] of S if SA C S [AS C §J.
. In other words for alla € A, s € S, sa € A Jas € A]J.

If A is both left and right ideal of S, then A is called an ideal of S.

Definition 1.1.14. A homomorphism of a semigroup S into a semigroup T is a

mapping ¥ : S — T which preserves the property;

U(zy) = ¢(z) Y(y) , forallz,y € S.
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Proposition 1.1.15. For an equivalence relation € on a semigroup S is following

are equivalent :

1. There is a semigroup operation on S|%€ such that the projection S — S|€ is

a homomorphism:

2. € admits multiplication (a6 ¢, b€'d = ab € cd):

3. € admits multiplication on left (a€ b = xa € xb) and on the right
(a € b= ax € bx).

Definition 1.1.16. A congruence on a semigroup S is a equivalence relation €
on S which satisfies the equivalence condition1.1.15 The resulting semigroup S|
is the quotient of S by €.

The left congruence is a equivalence relation € which admits multiplication on the
left (a € b= xa € xb) and a right congruence is an equivalence relation € which

admits multiplications on the right (a € b = xa € xb).

Definition 1.1.17. Let S be a semigroup if S has no ideal other than itself S said

to be simple.

Definition 1.1.18. S be a semigroup with a zero then S is a 0 - simple with fol-

lowing conditions ;

1. S2#£0
2. S has no ideals except 0 and itself.

Definition 1.1.19. A semigroup S is called completely simple if it is a simple and

contains a primitive idempotent.
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Note 1.1.20. o Left translation of S is a mapping X\ : S — S such that

Mzy) = (Ax)y for all x,y € S. If X, u are left translations then so is A\
since A(p(x,y)) = M(px)y = (A(px)y) for all z,y € 5.

e Right translation of S is a mapping p : S — S such that (xy)p = x(yp) for
allz,y € S.

o The left translation X\ and right translation p are linked in case x(\y) =

(xp)y, for all z,y € S.

Definition 1.1.21. The translation hull of S is the set 2(S) of all ordered pairs
(A, p ) [called bi translation] of linked left and right translation \ and p of S.

Note 1.1.22. If (X, p ), (p,0) € Q(S) then x(A(py)) = (xA) (ny) = (xp) (0y)

for all x,y € S.Hence Q(S) is a semigroup under pointwise operation,

(A, p) = (A p, po)

Definition 1.1.23. A bicyclic semigroup is an inversion of semigroup such as
monogenic that 1s, generated by a single element. The Idempotents of the bicyclic
semigroup form a chain, which is ordered with respect to the type of positive num-

bers.

Definition 1.1.24. An inverse semigroup is a semigroup S such that gor every
element s € S there exists a unique “inverse 7 s € S such that ss's = s and

s'ss’ = §'. It is evident from this that 8" = s

Result 1.1.25. The idempotents in the inverse semigroup form a subsemigroup
which is commutative and idempotent. Then for any idempotents e, f we define an

order < on idempotents by e < f if and only if e = ef.

Proposition 1.1.26. Let S be a reqular semigroup with set E of idempotents and
e, f € E.Then the set S(e, f), defined by

Sle, f)={geV(ef)yNE:ge= fg=g} is nonempty.
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Definition 1.1.27. The set S(e, f) is called the sandwich set of e and f. It has
obvious alternative characterization, S(e, f) ={g € F :ge = fg=g,eqf =ef}.

Proposition 1.1.28. Let e, f and g be idempotents in a regular semigroup.
1. If eL [ then S(e, g) = S(f, g);

2. if eZf then S(g, e) = S(y, [).

Proposition 1.1.29. Let e, f be idempotents in a reqular semigroup S. Then S(e,f)

is a subsemigroup of S and is a rectangular band.
Theorem 1.1.30. Let a be an element of a reqular D-class D in a semigroup S.

1. If d' € V(a), then ¢’ € D and the two H-classes R, N L), L, N R, contain,

respectively, the idempotents aa’ and d'a.

2. If b in D is such that R, N Ly and L, N Ry contain idempotents e, f, respec-

tively, then H, contains an inverse a* of a such that aa® = e, a*a = f.
3. No H-class contains more than one inverse of small a.

Proposition 1.1.31. If U is a reqular subsemigroup of semigroup S, then LV =

L3N (UxU), RY = RN (UxU),HY = HSN (U xU).

Proposition 1.1.32. Let S be a semigroup. Then the following statements are

equivalent:

1. S is completely simple;

1 1

2. S is completely regular, and, for all z, y in S, xz="' = (xyx)(zyx)~
3. S is completely regular and simple.

Corollary 1.1.33. If e is an idempotent in a semigroup S, then H, is a subgroup

of S. No H. - class in S can contain more than one idempotent.

Corollary 1.1.34. A semigroup S is simple if and only if SaS = S for all a in
S, that is, if and only if for every a, b in S there exist x,y in S such that ray = b.
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Lemma 1.1.35. S is regular, and has exactly two D - classes, namely {0} and
D = S|{0}. If a,b D, then either ab= 0 or ab € R, N L,. The latter occurs if and

only if L, N Ry contains an idempotent.

Theorem 1.1.36. Let S be a semigroup without zero. Then the following condi-

tions are equivalent:
1. S is completely simple;

2. S 1is reqular, and has the "weak cancellation’ properties : for all a, b, ¢ in S,

[ca = cb and ac = bc] = a=1b
3. S 1is reqular, and for all a in S, aba = a = bab = b

Definition 1.1.37. A semilattice is a commutative, idempotent semigroup. That

1s a commutative band.

1.2 Green Relation on Semigroup
Definition 1.2.1. Green’s preorder on semigroups are
a< b = a = ub for some uc S*

a<zb = a = bv for some v € S*

a< b = a = ub = bv for some u, v, € S!
a< 5 b= a = ubv for some u, v € S

each relation is preorder.
Note 1.2.2. e In pre-order a<b implies a is a multiple of b in same sense.

o [f S has a zero element and an identity element then 0<x<1 for all z€S

under all four pre-order0
o a<g b also written a<; , a<b (£) or L, < Ly

Similarly a<g also written a<gp b, a< b (#Z) or R, = Ry.

Similarly for <, , < .
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Definition 1.2.3. Green’s pre-order can be defined in terms of ideals of S. A left
ideal of S is a subset LC S such that SL C L. A right ideal of S is subset RC S
such that RS C R.

Result 1.2.4. Green’s preorder <, induces a partial order on the set of idempo-

tents called the Rees order.

Proposition 1.2.5. A partial order on set E(S) of idempotents of semigroup S

defined bye < f <= e <y f<=ef = fe=e.

Definition 1.2.6. Green s relation on semigroup S are equivalence relation £,
X, 7,

a? b+ <y band b<y a <= Sta = S'b

aZ b= a<yz b and b<y5 a = aS' = bS!

al b < a<p band b<, a < aZ b and aZ# b

af b<= a< s band b g a <= StaS' = StpSt

Thus # =L NRX L, % C 7, 2L is right congruence (a2 b = ac L bec)
since Sta = S'b = Stac = S'be, dually X is a left congruence (a# b= ca % cb ).

Definition 1.2.7. Green 's preorders induces partial order relations on the quo-
tient set S|.L , S\%# , S| , S| 7 ;

by defenition,

L, <Ly<+= a<lg b

Ry < By <= a<z b

Hy, < Hy <= a<, b

Jo < h=al, b

when L, (Rq, H,, J,) denotes £ - (# , 7, 7 ) class of a.

Proposition 1.2.8. For all a, b € S
, a0l x X b for somex € S < aZ y L b for somey € S. Hence the binary
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relation & defined by

aPb <= aLxX#b forx € S

> aZyZLb for y € S is an equivalence relation.

Result 1.2.9. The fifth Green s relation 9 is defined by 1.2.8

Note 1.2.10. Z is reflexive, symmetric, transitive since
aP2bPDc=>aLxXZbLyxcforsomex,yecS, al v L 2Ry X cfor

some z € S and a9.
Lemma 1.2.11. For an element a of a semigroup S the following are equivalent :
1. a ha an tnverse;
2. axa = a for some x € S;
3. R, contains an idempotent;
4. L, contains an idempotent ;
Result 1.2.12. A element a of S is reqular in case it satisfies 1.2.11
Result 1.2.13. A Z - class is reqular when & is reqular.

Proposition 1.2.14. A ¢ - class J which contains idempotents e > f contains

a bicyclic subgroups.

Proposition 1.2.15. [Hall ’s 7 - class theorem | - Let A and B be _# - classes of
S such that A> B in S|_# and every element of B is reqular. For each Idempotent
e of A there exist an idempotent f of B such that f < e.



Chapter 2

Regular Semigroup

2.1 Regular Semigroup

Definition 2.1.1. A semigroup S is called regular if for each element a belongs

to S there exist x belongs to S suchthat a = aza.

e In the case there exist a’ belongs S suchthat both
a = ad'a and @' = d'aa’ are satisfed such an element a' is called inverse for

a; the set of inverse of a is denoted by v(a) = {z € S : a = axa,r = xax}.
o A reqular semigroup is called inverse if each element has unique.

e Let V(x) denote the set of all inverse S and E(z) denote the set of all idem-

potents of S.

2.2 General Properties

Lemma 2.2.1. [Lallement’s Lemma/ Let S be a reqular semigroup and
Y :S— T be a homomorphism. Every idempotent 1) (x) of im 1 is the image under

¥ of an idempotent e <z of S.

Proof. Assume that ¢(x) is idempotent.Let y € v(2?) and e = xyz. Then e is
idempotent.(since yraxy = y) e <4 z, e < = and

d(e) = ¢(ayz) = P(aya?) = P(a?) = ¢(=). O

11
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Proposition 2.2.2. Let S be regular semigroup and v : S — T be a homomor-

phism. Then kerp C € iff 1 seperates the idempotents of S.

Proof. Assume that 1) seperates the idempotents of S [ if e # f in E(S), then
v(e) # v(f)]

Let ¢(x) = ¥(y) and 2’ € V(z).Then, ¢(z'y) = ¥(2'x)e E(T). By Lallement’s
lemma, ¢ (z'y) = ¥(e) for some idempotent e <, z'y. Since 1 separates the
idempotents of S it follows that 2’ x = e and x.Ze <y 7'y <& y. Dually x<yy.
Exchanging x and y then yields x¢y.Thus keryy C 2. The converse is clear

sincean .77 - class contains at most one idempotent. O

Proposition 2.2.3. Fvery reqular semigroup S has a smallest group congruence

g .

Proof. : In a regular semigroup, every .Z - class andZ - class contains an idempo-
tent.Hence a regular semigroup which contains only one idempotent has only one
F - class and is necessarily a group. Thus a congruence % is a group congruence
iff S/% contains only one idempotent : by Lallement’s lemma, this happens iff
E(S) is contained in % - class.

Therefore is a smallest congruence on S with this property.

]

Proposition 2.2.4. Every reqular semigroup S has a smallest inverse congruence

.

Proof. A regular semigroup is an inverse semigroup iff its idempotent commute.
Hence a congruence € on S is an inverse congruence iff the idempotents of S/%
commute ; by Lallement’s lemma, this happens if and only if ef% fe for every
e, f e E(9).

Therefore there is a smallest congruence on S with this property. O

Proposition 2.2.5. An order realation on any reqular semigroup S is

defined by :
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y <= (a)x <z y and x = ey for some e € E(R,)
<~ (b)x <gy and x =yf for some f € E(L,)

< (c)x < yandx = xy'x for all y € v(x)

< (d)x < yandx = zy'zforsomey € V(x)

If x <y, then for each f € E(R,) = E(s)N (Ry) there exists g¢ E(R,) suchthat

g<u fandz = gy.

Proof. First we show that (a), (b), (¢) and (d) are equivalent. Assume (a), e <g
y and z = ey for some e € E(R,). If f € E(R,), then e <54 f, fe = e = efe,
ef € E(R.) = E(R,) ef <y e, and v = efy (Since fy = y).Thus (1) implies the
last part of the statement. Now let v/ € V(y). Then there exists g € E(R,) such
that g < yy' and x = gy;hence x = gyy'gy = xy'x Also v = ey<y y, so x <
y.Thus (a) implies (c). Clearly (c) implies (d). Next assume (d), z <, y and z
= xy'x for some y'€ V(y).Then = <5 y, vy € E(R,), and x = (zy')z. Thus (d)
implies (a). Dually, (b), (c), and (d) are equalent.

To prove < is an order relation we use (a). Since S is regular, each R, contains
an idempotent e, and then x = ex shows z < x. If v < y< z, so that x <y y<z=z
and x = ey, y = fz for some e€ E(R,), f € E(R,) Then e <5 f, fe =e = efe,
efe E(R,),x =efz, and z < z. O

Result 2.2.6. The natural order on a reqular semigroup s the order relation 2.2.5.
Proposition 2.2.7. In reqular semi group S :

1. if e, fe E(S), then e < f in the natural order if and only if e < f in the

Rees order ;
2. x < e€ E(S) implies v € E(S);
3. x<yandxZ y (or xLy) impliesx =1y ;

4. if x <y, then for each y'€ V(y) there exists ' € V(x) suchthat x'<y/'.
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Remark. A regular semigroup is completely semisimple in case all its principal

factors are completely simple or completely semi simple.

Proposition 2.2.8. A reqular semigroup S is completely semisimple if and only

if v <y and Py in S implies v = y.

Proof. Since S is regular its principal factors are not null and are simple or 0 -
simple. Hence S is completely semisimple if and only if all nonzero idempotents
in the principal factors are primitive ; equivalently, if no ¢ - class J of S contains
idempotents e > f.Then the last part of 2.2.5 shows that x < y and %y implies
x=y.

If conversly S is not completely semisimple,then 1.1.15 one of its ¢ - classes
contains a bicyclic subsemigroup T of S ; Since T is bisimple, T is contained in a

simple & - class, which then contains idempotents e > f. O]

Remark. A reqular semigroup is primitive when all its nonzero idempotents are
primitive.
Proposition 2.2.9. A regular semigroup is primitive if and only if all its nonzero

elements are primitive.

Note 2.2.10. 1. Since S/ ¢ ‘s directed down, a primitive reqular semigroup

without zero is completely simple.

2. Let (S;)ier be any set of semigroups with zero such that S;NS; = O whenever
1 # 7. The 0-direct union of the semigroups S, is the disjoint union
S = (UierSi|0)U{0} in which each S; is a subsemigroup of S and S;S;j= 0

whenever i # j. If every S; is completely 0-simple, then S is primitive.

Theorem 2.2.11. A reqular semigroup with zero is primitive if and only if it is

a 0-direct union of completely 0-simple semigroups.

Proof. Let S be primitive regular and J be a nonzero _#-class of S. By Hall’'s _¢#

- class Theorem (preposition 1.2.15). J, < J in S/_# implies J, = 0.

Hence S'JS" = J U {0} and P; is a subsemigroup of S. Also J, # J, implies

Jup < Ju, Jp and ab = 0. Therefore S is the O-direct union of its principal factors.
O
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2.3 Petrich Representation

Definition 2.3.1. Petrich representation is represents a reqular semigroup S by
bitranslation of the traces of its & - classes, so that S can be described in terms of

translation hulls of completely simple and 0 - simple semigroup.

Note 2.3.2. 1. Let S be any semigroup and D be regular & - class of S with
trace T'=Tp = DU{o}. Let * denote the multiplication on T.
Then a *b = abif a, b € D and ab € R,NLy, otherwise a * b = 0 for each
s€ S and ac T define N°a = \ha = sa if sa Lac D ,0 Otherwise.
ap® = ap’a = as if as Za € D, 0 Otherwise. and x° = x5, = ( A°, p°).

Lemma 2.3.3. xp is a homomorphism of S into Q(Tp).

Proof. Let a,b € T. If a=0or b=0, then A*(axb) = 0= (A\a)xb. Assume a,b € D.
If (A%a) x b # 0, then saZa, sa*b = sab € Ry, N Ly, L, N Ry = L, N Ry contains
an idempotent, ab € R, N Ly, sab € Rs, N Ly, and A (a * b) = sab = (Na) x b.
Conversly assume A*(a x b) # 0.Then a b = ab € R, N L, and sab € Ly, = Ly,
Hence a = abu, ab = vsab for some u,v € S, a = abu = vsabu = vsa, and saZa.
Then sab € Ry,, since Z is a left congruence, and (Aa) x b = sab = A\*(a * b).
Thus A® is a left translation of T.
Dually p® is a right translation of T. Let ab € D;assume (ap®) x b # 0. Then
as#a and as * b = asb € R,s N L, = R, N L. Hence sb.Zb (since asb.Zb),
asb € R,N Lg, and a* (A°b) = a*xsb = asb = (ap®) xb. Dually a* (A\°b) # 0 implies
(ap®) * b = a * (A°b). Therefore A* and p*® aare linked and x* = (\*, p*) € Q(T).
Finally let s,t € S. If Aa # 0,then sta.Za € D, so that taZa and \*(\a) =
As(ta) = sta = Ma. If Conversly \*(A'a) # 0,then a € Db, taZa, and staa, so
that sta and M\*'a = sta = X\*(\'a). Dually p* = p®p!, and x is a homomorphism.
O

Note 2.3.4. Given a semigroup T, call a subsemigroup B of w(T) bitransitive in
case, for all a,b € T, a b implies a = b., b = B'a for some 3,3 € Bl and
dually aZb implies a = b3, b = a3 for some (3,3 € B*.
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Lemma 2.3.5. xp is a bitransitive subsemigroup of Q(Tp).

Definition 2.3.6. The Petrich representation of S is the homomorphism
X S = lpesyo QTp) defined by x* = (xp)pes/2-

Theorem 2.3.7. When S is reqular, x s injective homomorphism.

Proof. Assume x* = x! and let x be an inverse of s. With D = D, = D, we have
st Lx, Nx = sx€ D, Nx =sx # 0 and tx = sx. Dually 258 Z v and xt = x p' =
xp® = xs. Then sZsx = tr<4 t. Exchanging s and t yields s #Z t.Hence t Z sx =

(sz)? and t = szt = sxs = s. O

Result 2.3.8. Therorem 2.3.7follows that reqular semigroup S is a subdirect prod-
uct of the semigroup xp(S) by 2.5.5.

Corollary 2.3.9. Every regular semigroup S is subdirect product of the semigroups
xp(S), each of which is a reqular bitransitive subsemigroup of the translational hull

of a completely simple or completely 0 - simple semigroup.

Proof. In a completely 0-simple semigroup, ab € L, # O implies ab € R, # 0 and
conversely. A completely semisimple semigroup S has similar property: if ab in
S with a_#b, then b = tab for some t € S, ea = a for some idempotent e € D,
b = teab, te € J,, since b < 4 teab < ste < 4, abL# 0 in the principal factor of
Jo = Jp, abZa in the principal factor, and abZa in S. Dually, abZ a implies ab.¥
b when a% b. It follows that x7, is innerbitranslation of s when s € D. If D is no
the kernal of S, then xj, = 0 for some s and xp(z) is an extension type of Tp.

]

2.4 Strict Regular Semigroup

Definition 2.4.1. Regular semigroup which are subdirect products of completely

simple and 0 - simple semigroups are sometimes called Strict reqular semigroups.

Theorem 2.4.2. For a reqular semigroup S the following conditions are

equivalent :
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1. S is a subdirect product of completely simple and completey 0 - Simple semi-

group ;

2. for every # - classes A > B and idempotent ec A there is exactly one
tdempotent f € B such that e > f ;

3. for every Z - classes A > B there is for each x € A ezactly oney € B such
that © > y.

Either conditions implies that S is completely semisimple.

Proof. First assume that S is a subdirect product S C Il;c; Si of completely simple
and 0 - simple semigroups (5;);c;. Each element a of S is surjective
homomorphism S — ;.
Let A and B be _# -clases such that A > Bin S/ _7.
Let ee E(A) = E(S)NA. By Hall’'s _# - class theorem (1.2.15), there is idempotent
fe E(B) suchthat e > f. Suppose that f,g € E(B) and e > f,g. Since f ¢
g we have f; # g; for every i. which in the completely 0 - simple semigroup S;
implies either
fi=g;=0or f;, gg # 0 ; in the second case e¢; > f;, g; implies f; = g;, since all
nonzero idempotents of S; are primitive.Hence f = g and we have proved that (1)
implies (2).

Now assume (2). Let A > B be _# - classes ; for each idempotent ec A denote
by € the unique idempotent g€ B suchthat e > g. The following Lemma shows
that (3) holds. O

Lemma 2.4.3. Let A> B be ¢ - classes, x € A, e € E(R,), and z € B. Then

EXer;ex=z;impliesez =z ;and z < x iff z = ex.

Proof. Assume ez = z. If 2/ € V(z), Then ez = z implies 2’ e € V(2) and 22’

e € E(R,) C E(B). Then zz' e < e yields 22’ e = € and ez = 22’ ez = 2.
Let y =€ x. Then e Z x implies ¢ = € e Zex, y € B,

ec Ry,y<e<e<pzzandy < a If coversly z € B, z < x, then by 2.2.5

thereexist f € R, suchthat f < e and z = fx ; then f = 2z and z = ex. O]
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Lemma 2.4.4. Let A> B be # - classes of a strict reqular semigroup.

Let Yp? : A — B assign to each x € A the element y € B suchthat y < x, then
Yp? is a partial homomorphism. Furthermore 14 is identity on A ;

if A> B > C, then ¥c® o0 ¥p? = ¥t and vy = 191 = Y’ (1) VP (y) when
A=Jy , B=1J,,C=Jyadz>x >¢c(x), y >y = v ().

Proof. As above denote 15”4 (z) by Z. By 2.4.2 T = ez whenever e € E(R,) Dually
T = 2y whenever y € E(l,). Assume z,y,2y € A and let e € E(z) , f € E(R,).
Then xy = xfy, so v < yuf < yxfy and xf € A.Since Py is completely simple
or 0 - simple by 2.4.3,we have zf € Ly, 2f € R, = R., Hence, of = xff = af ;
of =exf =exf=7=f;and Ty = exy = exfy = xfy = Tfy = 77.

Thus ¥? is a partial homomorphism. It is clear that ¢4 is the identity on A
and that ¥o? o ¥p? = Yo when A > B > C.Now let z,y € S and A = J,,
B = J,, C = J,y. Let s denote ¥’ (s)and take e € F(R,), f € E(L,).Then e(zy)
= oy = (2y)f and 2y = exyf = exyf = Ty, by 242 2 > 2, > T,y >y > 7,
then 71 =7, y1 = y and vy > yx191> 47y so that z,y € C'and x1y1 = 71 Y1

=7
Yy =xy O

Definition 2.4.5. A Tree is partialy ordered set T in which each principal ideal

{xeT :x<t}is a chain. Equivalently, x,y,<t impliesx <y ory < x.

Definition 2.4.6. tree T the height h(t) of an element t is number of elements of

chain {z € T : = < t}.

Result 2.4.7. If t has finite height, then either t is minimal ( if h(t) = 0 ) or

there is greatest x < t , the predecessor of t.

Result 2.4.8. If S is strict reqular semigroup and tha S/ ¢ is a tree in which

every element has finite height.
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Theorem 2.4.9. [Lallement and Petrich] The following conditions on a semi-

group S with zero are equivalent :

1. S is reqular and its idempotents form a tree in which every element has finite

height ;

2. Sis a strict reqular semigroup and its Z - classes form a tree in which every

element has finite height ;
3. S is a tree of completely 0 - simple semigroups.

Proof. 1t is clear that (2) = (1). Conversly assume that (1) holds. S is completely
semisimple, since a principal factor of S cannot contain a bicyclic subsemigroup
with its infinite descending chain of idempotents. S is strict regular (2) of theorem
2.4.2 holds. S/ _Z is a tree in which every element has finite height. since A > B
in S/ # = e > f, for some idempotents ec A , f € B.

Thus (1) = (2).

It follows from lemma 2.4.4 that (2) = (3).

Finally let S be a tree of completely 0 - simple semigroup S;(t € T'), where T is a
tree in which every element has finite height. By definition every nonzero product
in S; is a product in S; therefore S is regular. Also an ideal of S which contains x €
S;|0 also contains 1;(x) and intersects S,|0 for every u < t. Hence the principal
ideal generated by x €5;/0 is (J,,S.[0. Thus the # - classes of S are the sets

Jy =58 0and S/ 7 =T.

It remains to show that S is a strict regular semigroup. We prove properly (2)
in 2.4.2.Let e € J; and u < t. As before there is an idempotent f € J, such
that f < e. It remains to show that f is unique. If ¢ = u then f = e since the
idempotents of S; are primitive. Otherwise t > u and we prove the uniqueness of
f by introduction on the height of ¢.

It f <e then f=e=u(e)f , f = fe = fth(e) and f < tiy(e), where $(e)< S,

is an idempotent, hence f is a unique by induction hypothesis.



Chapter 3

Completely Rgular Semigroup

Note 3.0.1. A group (G, pu) can alternatively be regarded as having three opera-
tions, namely the binary operation p : (a,b) — ab, the unary operation a — a™!,
and the 0-ary operation (the constant) 1. If we wish to emphasize this aspect, we
write G = (G, u=',1). From this point of view, a morphism ¢ : G — H between
two groups is defined by the properties

(ab)p = (ad)(bg), (a™')¢ =(ad)~", 16 =1.

Definition 3.0.2. A semigroup (S, ) will be called a U-semigroup if a unary

operation a — a' is defined on S, with the property that (a') = a,for every a in S.

We write S = (S, u,1).

Result 3.0.3. Every semigroup may be regarded as a U- semigroup: the most

obvious approach is to define a’ = a for every a in S.

Note 3.0.4. The unary operation must interact in some way with the binary
operation. Two versions of interaction are the first, in which a’ is usually denoted
by ax, gives us a x—semaigroup, or a semigroup with involution ; here the properties
of the unary operation are given by

(a*)* = a, (ab)* = b*a*. The second, in which we shall write a’ as a™1,gives us what
we shall call an I-semigroup; here the properties are

(e =a,aa7a = a.

Since these equations are to hold for every element of S, it follows

()t =a,aa"ra = a, and so a”! is an inverse of a.

20
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3.1 The Clifford decomposition

Definition 3.1.1. A semigroup S will be called completely regular if there exists
a unary operation a — a’ on S with the properties

()™ =a,aa7ta = a,aa™t = a"a.

Proposition 3.1.2. Let § be a semigroup. Then the following statements are

equivalent:
1. S is completely reqular;
2. every element of S lies in a subgroup of S;

3. every H - class in S is a group.

Proof. (1) = (2).Let a € S, and let aa™! = a~*a = e. Then, by Theorem 1.1.30,
a€ R.NL.= H,, and H, is a subgroup of S by Corollary 1.1.33.

(2) = (3). Let a € S; then a € G for some subgroup G of S. Denote the identity
element of G by e, and the inverse of a within G by a*. Then from

ea =ae =a and aa* =a*a =e

it follows that aHe, and hence H, = H,, a group.

(3) = (1).For each @ in S, define a~! to be the unique inverse of a within the
group H,. (Notice that the element a may have several inverses in S, but only one
of them lies in H,.) Then it is clear that (a=!)™! = a,aa"'a = a,aa™! = a la,

and so S is completely regular. ]

Proposition 3.1.3. Let S be a semigroup. Then the following statements are

equivalent:
1. S is completely simple;
2. S is completely reqular, and, for all x,y in S, va~' = (zyx)(zyz)~ L.

3. S is completely regular and simple.

Proof. (1) = (2) Let S be completely simple, and for each a in S, let a~! be the
unique inverse of a lying inside H,. Let x,y € S. Then by Lemma 1.1.35, applied
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to the case where 0 is indecomposable, we deduce that ryzHzx, and it then follows
that zz~! = (zyx)(xyz)~!, as required.

(2) = (3).Let a,b € S. Then

rvr! = (zyz)(vyx) ™

and so J, < J,. By interchanging the roles of a and b we may equally well show
that J, < J,. It follows that J = S x .S, and so S is simple. (3) = (1). Suppose
that S is completely regular and simple. We shall show that every idempotent of
S is primitive, from which it will follow, by Theorem 1.1.36, that S is completely
simple. Accordingly, let e, f be idempotents in S, and suppose that f < e, so that
ef = fe= f. Then,

since S is simple, there exist z, t in S such that e = zft. (See Corollary 1.1.34)
We now produce 'improved’ versions of z and t by defining x = ex f

and y = fte; we still have,

2y = (ezf)f(fte) = e(=ft)e = & = e,

but now have the extra advantage that ex = xf = x and fy = ye = y. Now S
is completely regular and so, by Proposition 3.1.2, the element x belongs to H,
for some idempotent g.Thus gxr = v¢g = x, and there exists 71 in Hy, such that

-1

xo~ ' =27z = g. As a consequence, gf = taf = xx !

= g. But we also have

gf =gef =gxfyf =xyf=cf=f,

and so g = f.Hence

f=Tle=ge=gxfy=afy=e.

We have shown that f < e implies fe for every pair of idempotents in S. Thus
every idempotent in the non-empty set of idempotents of S is primitive, and so S

is completely simple as required. O

Theorem 3.1.4. Every completely reqular semigroup is a semilattice completely

simple semigroups.
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3.2 C(lifford semigroup

Definition 3.2.1. A Clifford semigroup is defined as a completely reqular semi-
group (S,,-1) in which, for all z, y in S

(zx M) (yy ") = (yy~ ") (zz™h).

Note 3.2.2. In an arbitrary semigroup S, let us say that an element c is central
if cs = sc for every s in S. The set of central elements forms a subsemigroup of S,

called the centre of S.

Theorem 3.2.3. Let S be a semigroup with set E of idempotents. Then the

following statements are equivalent:
1. S is a Clifford semigroup;
2. Sis a semilattice of groups;
3. S is a strong semilattice of groups;
4. S is reqular, and the idempotents of S are central;
5. S is regqular, and D° N (ExE) = 1.

Proof. (1) = (2). Let S be a Clifford semigroup. Then S is completely regular,
and so is a semilattice Y of completely simple semigroups S. Now every idempo-
tent e in S is expressible as zx~1 for some x the obvious choice for z is e itself and
so the condition in above defenition (3.2.1) says that idempotents commute. This
happens within each of the components S, and so each S,, being a completely
simple semigroup in which idempotents commute, is a group. Thus S is a semi-
lattice of groups.

(2) = (3). For each ain Y let e, be the identity element of S, (a € Y'). Suppose
now that o > . Then for each o in S, the product ega,, belongs to S, = S,
and so it makes sense to define a map ¢, : So.5s by the rule that a,¢. 3 = eqaq.
It is clear that ¢, g is the identity map on Sa.Also ¢, 5, is a morphism. To see

this, notice that for every a,, b, in S,,

(aaPas B)(bada, B) = (eﬁaa)<e/3boc) = ((eﬂaa)eg)ba.
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Now ega, € Sg and eg is the identity of

S,B' S0 (aa¢a,ﬁ)(ba¢a,6) = eﬁaaba = (aaba)¢a,ﬂ>

as required.

Next, suppose that o > 3 > ~ and notice, by a standard property of group mor-

phisms, that, for all « in S,

(aaQba,B)(bB,a = e’y(eﬁaa)
= (eyep)aa = (esPp4)aa

= €40q = aa¢o¢,7

thus ¢a s¢p~ = ¢a~ as required.

Finally, notice that, for arbitrary o and 8 in Y and for elements a, in S, and bg

in Sz, the product a,bg lies in S, where v = a3. Hence

aabg = ey(aabp) = (e4aa)bs
= ((eyay)eq)by

= (e4aa)(eybg) = (aaany)(bsds

and so S is indeed isomorphic to the strong semilattice of groups S[Y’; Sa; ¢a.s]
(3) = (4) Certainly every strong semilattice of groups S[Y; G; ¢a 5] is a regular
semigroup. Its idempotents are the identity elements e,, of the groups G, and it
is easy to calculate that, for all 8 in Y and all g3 in G,

€agp = (€aPa.0p)(989p.08) = €as(9808.08) = 9sPs.08,

98€a = (989p,a8)(€aPaas) = (980p,a8)€as = 958,08}

thus idempotents are central.
(4) = (5) Suppose that eD? f, where e and f are idempotents. Then, by Theorem
1.1.30 there exists an element a and an inverse a’ of a such that awa’af. Hence,

using the centrality of the idempotents e and f, we have
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e=e¢’ =a(da)d =afd = fad = daad

= ad'e = aea = ad'aa = f* = f.

and we deduce that D N (ExE) = 1g
(5) = (1). Each D — classcontainsasingleidempotent, andsoisagroup.ThusD

1

= H , andsoeachelementahasexactlyoneinversea™", with the properties,

(aY)=a,aa"" = a,aa7" = a'a.

Thus S is completely regular, and so is a semilattice Y of completely simple
semigroups S,. Now for all z,y in S, we have zy € R, N L,, and so xDy. Thus
each S,, is contained in a single D - class, and so has a single idempotent. Hence
each S, is a group.

From (2) = (3) we now deduce that S is a strong semilattice of groups S[Y; Sa; ¢a s),and

it then follows easily that for an arbitrary = in S, and y in Sg,

:m_lyy_l = €,E3 = €a8 = €3€6q = yy_la:x_l

Thus S is a Clifford semigroup. m

3.3 Band

Note 3.3.1. Let B be a band, Since B is completely reqular, it decomposes by
Theorem 3.1.4 in to a semilattice Y of completely simple semigroups Sy(a € Y').
Each of these completely simple semigroups, being a subsemigroup of B, is a band,
and it is a band satifying the law (xyx)(zyz) = xa', by Proposition 1.1.81. Since
x =12 for every x in a band, this identity reduces to xyx = x, and so we conclude

that each Sy, is a rectangularband.

Theorem 3.3.2. Every band is a semilattice of rectangular bands.
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Remark. Every rectangular band is isomorphic to a cartesian product I x A with

multiplication given by,

<i> /\) (]v ,u) = (i7 HJ)

Proposition 3.3.3. If ¢ is a morphism from a rectangular band Iy x\; into a
rectangular band I, x Ay , then there exist maps of ¢ : I} — Iy and

¢" : Ny — Ag such that, for all (z1,€) in LixA,

($17£1)¢ = (x1¢l7£17¢r) (31)

Conversely, if I x Iy and Ay x Ay are arbitrary maps, then the formula (3.1)

defines a morphism from Iy x Ay into Iy x As.

Proof. Let ¢ : I; x A — Iy x A be a morphism. Choose a fixed \; in A, and for

every z; in f; define a by z,¢'.
(21, M)¢ = (26, Aa)

Similarly, choose a fixed ¢ in Iy, and for every & in A define &,¢" by
(i1,§)¢ = (@2, &10").

then for all (1’1,§1) in Il X A17

(21,81)0 = [(21, A1) (i1, &1)]¢ = [(z1, A1) B[ (41, £1) @]
= (210", \2) (i, £10") = (214, &1).

Conversly, if ¢ is defined by (3.1) then, for all (z1,&), (y1,n) in I; x A,

[(331,51)(91,771)]¢ = [331,771]¢ = [$1¢l,7717 ¢l] = ($1¢lafl¢r)(y1¢l,771¢r)
= [(z1,£0)9][(y1, ) 9]

Thus ¢ is a morphism. O

Corollary 3.3.4. Let Ly, Ly be left zero semigroups and let Ry, Ry be right zero

semigroups. If ¢ is a morphism from the rectangular band L, x Ry into the
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rectangular band Ly x R, then there exist morphisms ¢' : Ly — Lo, ¢" : Ry —

Rsy such that
(l,r1)¢ = (he',m¢") (3.2)

for all (Iy,r1) in Ly x Ry.
Conversely, for every pair of morphisms ¢! : L1 — Ly, ¢" : Ry => Ry, the

formula (3.2) defines a morphism from Ly xRy into Ly x Ry.
Lemma 3.3.5. If a and b are elements in a reqular semigroup S, then
[Aa = Npandp, = py] = a =b.
Proof. Suppose that A\, = \y and p, = pp, and let ' € V'(a),0 € V(b). Then
a=ada= (A, a)a=(\a") =bda,

and so R, < Rp. Similar arguments show that L, < Ly, Ry, < R, Ly < L, and so
a7’b. By Proposition 2.4.1 we may now Suppose that ¢’ and &’ have been chosen
so that aa’ = bV’ and a’a = b'b, and it then easily follows that a = ba’a = bb™b.

]



Chapter 4

Other Classes of Regular

Semigroup

4.1 Locally Inverse Semigroup

Definition 4.1.1. In every regular Semigroup S the subset eSe is clearly a sub-
semigroup for every idempotent e. It is even a reqular subsemigroup, since for
every x = ese in eSe and every inverse x' of ,

x =zx'x = (ve)r'(ex) = x(ed e)x.

AregularsemigroupSwithset Eo fidempotentswillbecalledlocallyinversei feSeisaninversesemi

Note 4.1.2. If a, b are elements of a reqular semigroup S with set E of idempo-
tents, then we a < b if R, < R, and (e € EN R, )a = eb.

Proposition 4.1.3. Let S be a reqular semigroup with set E of idempotents then
the relation < define by (4.1.2) is a partial order relation. Within E the order
coincides with the natural order among idempotents :

e < fif and only if ef = fe =e.

Proof. 1t is clear that a < a for every a in S simply choose e = aa’. Suppose now
that @ < b and b < a. Then certainly a R b. Also, there exists idempotents e, f
in R, = Ry such that a = eb and b = fa. Since e R f we have fe = e and it then
easily follows that a = eb= feb= fa =105

28
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To show that < is transitive suppose that a < b and b < ¢. Certainly R, < R, <
R., and there exists e in EN R, and fin £ N Ry such that a = eb and b = fc. Now
R. =R, < R, = Ry, and so fe = e. Hence (ef)* = e(fe)f = e*f = ef.

We now have a = (ef)c and from R, = Ref. < Ref < Re = R,.

We have that ef € EN R,.

To prove the final assertion, observe that for all e, f in E, e < f if and only if
R, < Ry and there exists i in £N R, such that e = i f, that is, if and only if fe =e
and ef = e. O]

Theorem 4.1.4. Let a, b be elements of a regular semigroup S with set E of idem-

potents. Then the following statements are equivalent :

1. a < by

2. a €bS and (Fd’ € V(a))a = ad'b;

3. H, < Hy and (allt € V(b))a = ab'a;
4. Hy, < Hy and (36" € V(b))a = ala.

Proof. (1) = (2) is clear, since e € E N R, if and only if there exists a’ in V(a)
such that aad’ = e.

(2) = (3). We are supposing that a = bu for some u in S, and that a = (aa’)b.
Clearly we take e as aa’. Now notice that (ua'b)? = ua’bua’b = ua’'aa’b = ua'b..
So define f as ua’b, and observe that

bf = buad'b = aa’'b = a.

(3) = (4). Suppose that a = eb = bf, with e, f € E. Then R, < Ry and L, < Ly,
and so H, < H,. Also, for every b in V(b), ab/a = ebb'bf = ebf = a.

(4) = (5) is clear.

(5) = (1).Suppose that H, < H, and that there exists an inverse O’ of b for
which a = ab'a. Certainly R, < Ry. For every inverse a’ of a we see that
a(a'ab’)a = ab'a = a and (d'ab’)a(d’al’) = d'(ab/a)d’all = d'ab’;

hence a’all € V(a). Let e = ad’al; then e € EN R,. From L, < L, we deduce
that a = ub for some u in S. Then eb = ad’ab/b = ab’b = ubb'b = ub = a. O
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Remark. [t is consequences of above theorem that order < can be defined also by
the left / right duals of the one - sided definitions. Thus for example, a < b if and
only if Ly < Ly and (e € EN Ly,.)

Result 4.1.5. In an inverse semigroup S the order relation < is compatible with

the multiplication : a < b and ¢ € S = ca < ¢b and ac < be.

Theorem 4.1.6. Let S be a reqular semigroup with set E of idempotents. Then

the following statements are equivalent :
1. S is locally inverse ;
2. < 1is compatible ;
3. |S(e, f)| =1 for all e, fin E.

Proof. (1) = (2). Let a < b and let ¢ € S. Thus R, < Ry, and there exists e in
E N R, such that a = eb. Let @’ in V(a) be such that aa’ = e, choose ¢’ in V(c),
and let g be an element of the sandwich set S(d’a, cc’). (Thus ga'a = ¢d’g = g and
d'aged = d'acc.) Also v'ga’ € (Vac) by Preposition 1.1.29 jand so the element
f=acdga € EN R,c.

Also f(bc) = acd ga’bc = aga’be = aga’aa’be = aga’ebe = aga’ac = age = ac.

We must now show that R,. < Rp..From R, < R, we deduce that a = bu for some
u in S. Hence for all & in V(b)

we have (V'a)? = babla = Vebl'bu = b'ebu = V'ea = b'a; thus b'a € E. Moreover,
bb.b'a="Va,babb="bebb'b="beb="ba, and so b'a < b'b.

From a = bu = bb’bu = bb'a we deduce that a.Zb'a, and it follows that there exists

an inverse a”’a = b'a < b'b. Also from

a = bu = bb'bu = bl (4.1)

we deduce a Zba, and it follows that there exists an inverse a” of a such that

a”a = b'a. To summarize, we now have
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a'a=ba<bb (4.2)

Also from (4.1) we deduce that
a=ba"a. (4.3)

As before, let ¢ € V(c), and let h € S(a”, a, ¢). Then from (4.2) we have
(a”ah)? = a” a (ha"a)h = a"ah® = a"ah,

(b’bh)? = b'bhaab'bh = b'bha"ah = V'bh = V'bh,

and so a”ah,b'bh € E. In fact a”ah = a”"ahad”a = V'ba" aha”ab’b € 'bSH'b,

b'bh = b'bha”"a = b'bha”"ab’b € Y'bSH'b,and so both a”ah and b'bh are idempotents
within the inverse semigroup v'6Sb'b. We deduce that

a"ah = a"aha"aha"aha”ab/bh = (a"ah)(b'bh) = (b'bh)(a"ah) = b'bh. Finally, de-
noting the idempotent ¢’ha”acbyf, we conclude, using (4.3), that

(be)f = bedha”ac = bhe = bb'bhe = ba"ahc = ahc = ac, and so R,. < Ry as
required.

(2) = (3).Let g,h € S(e, f), where e, f € E. Then in particular fg = ¢g and so
(9f) = g(fg)f = ¢*f Moreover, f(gf) = gf,(9f)f = gf andso gf < f. Similarly
eg € F and eg < e. By compatibility we deduce that gh = g(fh) = (gf)h < fh =
h, hg = (he)g = h(eg) < he = h.

That is,(gh)h = h(gh) = gh, (hg)h = h(hg) = hg, and so gh = hg. However, by
Proposition 1.1.29, S(e, f) is a rectangular band.

Hence g = ghg = g*h = gh = hg = h(hg) = hgh = h.

We conclude that |S(e, f)| = 1.

(3) = (1).Let e € F, let a € eSe, and let a’ € V(a) Nese. Then d'a € S(d'a,e),
for d'ad’a = d'a, ea’a = d’a and a’a(a’a)e = a’ae. Hence in fact, by our assumption,
a’a is the only element in S(a'a, e). By the same token, if a” is another inverse of a
in eSe then S(a”"a,e) = a”a. But, by Proposition 1.1.28, S(d'a,e) = S(a"a, e), and
so it follows that a”a = a’a. Similarly, by considering S(e, aa’) and S(e, aa”), we
deduce that aa” = ad’, and it now follows that a” = a"ad” = d'aad” = d'ad’ = a’.

Hence eSe is an inverse semigroup.
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4.2 Orthodox Semigroup

Definition 4.2.1. A semigroup is called orthodox if it is reqular and if its idem-

potents form a subsemigroup.

Theorem 4.2.2. Let S be a reqular semigroup with set E of idempotents. Then

the following statements are equivalent :

1. S is orthodox :

2. (Ve,f€E) fee€ Se [);

3. (Ya,be S) V(b)V(a) C V(ab);

4. Vee E)V(e) CE.

Proof. (1) = (2). Suppose that S is orthodox, let e, f € E, and let g = fe. Then
ge = fg=g,eqf =(ef)*=ef, and so g = f € S(e, f) by 1.1.28.

(2) = (3). Let a,b € S and let a’ € V(a), v/ € V(b). Then by preposition 1.1.28.
b'ga' € V(ab) for all g in S(a’,a,bb’) From (2) it thus follows that

ba' = (bb'd'a)a’ € V(ab), exactly as required.

(3) = (4).Let e € FE and let = be an inverse of e: xex = z,exe = e. Now both
x and ez are idempotents, and so each is each is an inverse of itself. By (3) we
deduce that (ex)(xe) is an inverse of (xe)(ex), that is to say, that ex?e is an inverse

2

of re’r = zex = x. Hence v = z(ex’e)r = (vex)(vex) = (vex)?

= 22, and so z is
idempotent as required.

(4) = (1).Let e, f € E. By preposition 1.1.26 there exist an idempotent g in
V(e, f) (an element of the sandwich set S(e, f).But then ef, being an inverse of the

idempotent g, must itself be idempotent. Hence S is orthodox. O



4.2. Orthodox Semigroup 33

Proposition 4.2.3. Let S be an orthodox semigroup with set E of idempotents.

For all a in S, e in E and a' in V(a), the elements aea’ and a’ea are idempotent.

Proof. With the given notation,

2 2

(aea')? = aed'aed'= aed'aed’aa’ = a(ed'a)?*a’ = aed’aa’ = aed’. Thus aed’ is an

idempotent. This proof for a’ea is similar.
Note 4.2.4. The set E of idempotents in an orthodox semigroup S forms a band

under multiplication and this is expressible as a semilattice Y of of rectangular

bands Ey(a € Y). Certainly E, N Eg # ¢ if o # (3, and we also have

EQEB - Eaﬁ, (Oé, 5 S Y) (CL)

Fach E, is a J¥ -class, and it will be consistent with our previous notation to

write JE, for the rectangular band E,, containing e. The formula (a) translates to

JEJE, C P =T (e, f €E).

The equivalence J¥ is the minimum semilattice congruence on E. From 4.2.2 we
know that V(e) C E for every e in E. In fact, if f € V(e) then efe =e, fef = f,
and it is clear that f € JE.. Conversly, if f belongs to the rectangular band JE,
then certainly f € V(e), since any 2 elements of a rectangular band are mutually

muverse.
Hence V(e) = JE, , (e € E).
Thus V (e) is determined solely by nature of a band E.

Proposition 4.2.5. Let a S, an orthodox semigroup with band E of idempotents.

If a’ is an inverse of a, then V(a) = J¥ pa' JE 4.

Proof. Let e € J¥,, and f € J¥ .. Then d'aed’a = d'a,ad’ faa' = aa’, and so
a(ed f)a = ad'aed’ad’ad’ fad'a = a(a'aed’a)d’ (ad’ faa')a = ad'ad’ad’a = a,

and

(ed fa(ed ) = ed'ad’ fad'ad' aed’ad’ f = ed(ad' faa')a(a'aed'a)d’ f
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Thus JEyed' JE .00 C V(a).
Conversely, suppose that a* € V(a). Then

a* = a*aa” = a*ad'aa”. (4.4)

Now, from
(a*a)(d'a)(a*a) = a*(ad'a)a*a = a*aa*a = a*a and (d'a)(a*a)(d’a) = d'(aa*a)d’a =
dad’a = d'a we deduce that a*a € JF¥,,. A similar argument shows that

aa* € J¥ 4, and it is now immediate from (4.4) that V(a) C J¥y.a'JE 0. O

Theorem 4.2.6. A reqular semigroup S is orthodox if and only if
(Va,b € S)[V(a)NV(b) # 0= V(a) = V()].

Proof. Suppose first that S is orthodox, and that a, b in S are such that

x € V(a)NV(b). Then a and b both belong to V' (z) and so, by Theorem 1.1.30,
raR*xb and axL*bx. Now xa, xb,ax,bxr € F, and so,and so, by Proposition 1.1.31,
raR¥zb and axLFbx. Certainly zaJ¥zb and axJFb, and so

Via) = J¥uuJf o = JE pxJPy, = V(b).Conversely, suppose that S is regular and
that we have the given impli cation. Let e, f € E and let g € S(e, f). Then from
ge = g we may deduce that eg is idempotent. Also g(eg)g = g, (eg)g(eg) = eg,
and so we have that g € V(g) N V(eg). From our assumption we deduce that
V(g) = V(eg). Hence in particular ef € V(eg), and so

ef = (ef)(eg)(ef) = (ef)(efg)(eg) = (eg)*. Thus S is Orthodox. O

Result 4.2.7. The equivalence relation v = (z,y) € SzS: V(z) =V (y) on an

orthodox semigroup S turns out to be a congruence.

Theorem 4.2.8. Let S be an orthodor semigroup with set E of idempotents. Then
the equivalence v defined by 4.2.7 is the smallest inverse semigroup congruence on

S. Moreover, for each a in S and each @' in V(a), ay = JFwaJ¥ 4.

Proof. To show that 7 is a congruence, consider (a, b) in v and let ¢ € S. Then,
for every z in V(a) (= V(b)) and for every ¢’ in V(c), we have ¢’ € V(ca) NV (cb).
Hence V(ca) = V(cb) by Theorem 4.2.6. A similar = argument shows that V(ac)

= V(bc), and so y is a congruence.The quotient S|y is certainly regular. By
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Lallement’s Lemma each idempotent of S/v is of the form ey , where e is an

idempotent of S. Now, for any two idempotents e, f in E,

Vief)=J" — J" s
=V(fe),

and from this we deduce that (ey)(fv) = (fv)(ev) in S/.
Finally, to show that ~ is the least inverse semigroup congruence, let p be a
congruence on S such that S/p is an inverse semigroup, let (a,b) € =, and let
x € V(a)(=V(b)). Then both ap and bp are inverses of xp in the inverse semigroup
S/p, and so ap = bp. We have shown that v C p.
To prove the final statement of the theorem, suppose that b € ay. Then V(a) =
V(b), and so a' € V(b) for every a’ in V(a). It now follows from Proposition 4.2.5
that

beV(d)=JFwad? ..
Conversely, if b €J¥ ,aJ¥ v, = V(a'), then V(a) NV (b) # ¢, and so V(a) = V(b)
by Theorem 4.2.6. Thus b € a7, as required. O

4.3 Semiband

Definition 4.3.1. A regular semigroup generated by its idempotents is called a

SEMIGToUP.

Note 4.3.2. 1. Semibands differ from locally inverse and Orthodozx semigroups

in the sense that they are not generalization of inverse semigroups.

2. A regular semigroup is orthodox and a semiband if and only if it is a band,
and it is both an inverse semigroup and a semiband if and only if it is a

semilattice.

3. Consider the set Sing,, of all singular maps from the set [n] = {1,2,...,n}
into itself. (By a singular map we mean one that is not a bijection.) This is

a finite semigroup, of order n* — nl.
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Theorem 4.3.3. For all n > 2, the semigroup Sing,, s a semiband.

Proof. To show that Sing,, is regular, let a Sing,, and define ¢ : [n] — [n] as
follows: if j € ima, let je be an arbitrarily chosen element of ja™!; if j € ima,
let je be an arbitrarily chosen element of [n]. Then it is clear that iaca = ia for
all i in [n]. Of course may be a permutation, but be a permutation, but certainly
1 = cac is singular, and ana = acaca = aca = «.The semigroup Sing,, has n-1
J-classes Ji,....., Jy_1, where J. = {a € Sing,, |ima| =r}(r =1,..,n —1). Let
E,,_1 denote the set of idempotents in J,_;. A typical element € of F,,_; has image
[n]|{i} of cardinality n-1. The map ¢ acts identically on [n]|{i}, and sends i to
7
some element j # i. We denote this map by ; it maps ¢ to 7 and all other
J
elements identically. Notice that we can easily deduce that E,,_; =n(n —1). O
Lemma 4.3.4. Let o € J,., where 1rn — 1. Then there exist € in E,_1 and [ in

Jry1 such that o = e0.

Proof. Write ima = (b, ba, ..., b,), and let ba~'= A;, (i=1,2,...,;r). It is convenient

to write

A Ay Lo A

by by ... b
in an obvious extension of a familiar notation. The sets A;, form a partition of
[n]. Since not all of the sets A;, are singletons, we may assume without loss of

generality that A; = (ay,a],...) has at least two elements.

a1
Then let € = ,
5]
B— A\{al} A2 AT\{al}
by by ... bbby
where b,y ¢ ima, and verify that a = . O

Corollary 4.3.5. Every finite semigroup is embeddable in a finite semiband.
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Proof. Let S be a finite semigroup and let X = S1U{y, 2}, where y, 2 ¢ S'. Define
amap «: S — Tx by sa = ps, where

xps = xs if v € S,

yps = zZps = z.. It is a routine matter to verify that « is a monomorphism.
Moreover, it is clear that s« is a singular element of Ty for every s in S, and so «

embeds S in the finite semiband Sing|,. O
Theorem 4.3.6. Every semigroup is embeddable in a semiband.

Proof. Let S be a semigroup, and let T be a regular semigroup containing S. It
is always possible to find such a semigroup T: for example, take T' = Tq1. Let 1
be a set containing a named element 1, and such that |I/{1}|?> T, and define B to
be the Rees matrix semigroup M|[T"; I; I; P], where the matrix P = (p;;) over T
has the properties that p;; =p;; =1 (i € I) and T C {p;; : i, # 1}.

The elements (1,1,7) and (7,1, 1) of B are evidently idempotent for all values of i.
Also, since each t in T is equal to some pkl, we have (i, ¢, 7) = (¢, 1,1)(1, 1, k)({,1,1)(1, 1, j),
a product of idempotents. Thus B is generated by its idempotents. Next, B is
regular, for if (i,¢,7) € T and if ¢’ is an inverse of t in the regular semigroup T,
then

(i,,5) (L', 1)(i, 8, ) = (4,12, 5) = (i, 2, 7).

Finally, it is clear that the map ¢ — (1,¢,1) embeds T in B, and so S, as required,

is embedded in a semiband B.



Conclusion

The regular semigroup which can be considered as the core semigroup since groups
are regular semigroup with a unique idempotent. The idempotent plays a prodom-
inat role in the structure of regular semigroup. Locally inverse semigroup and
Orthodox semigroups are regular generalization of inverse semigroups. A regular
semigroup S with set E of idempotents called locally inverse if eTe is an inverse.
A Orthodox semigroup is regular semigroup in which the idempotent form a sub-
semigroup. The Band B is regular if it satisfies the identity. Completely regular
semigroup form a prominent class of mathematical structures that have been ex-

tensively studied in semigroup theory, algebra and topology.
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