
 

Student’s Project-PG 

 2022-2023 



















M. Sc. MATHEMATICS

2021 - 2023

A STUDY ON REGULAR

SEMIGROUP



A STUDY ON REGULAR

SEMIGROUP

Dissertation submitted to the University of Kerala, in partial

fulfilment of the requirement for the award of the

Degree of Master of science

In

Mathematics

By

AVANI S

Candidate code: 62021126008

Course code :

DEPARTMENT OF MATHEMATICS

ST. GREGORIOS COLLEGE

KOTTARAKKARA

2023



CERTIFICATE

This is to certify that this dissertation is a bonafied record of the work carried

out by AVANI S under my supervision in partial fulfillments of the requirements

for the degree of Master of science in Mathematics of the University of

Kerala.

Mrs. BEENA G P Mrs. ANSLIN T M

Head of the Department Assistant Professor

Department of Mathematics Department of Mathematics

St. Gregorios College St. Gregorios College

kottarakkara Kottarakkara



ACKNOWLEDGEMENT

First and foremost we concede the surviving presence and flourishing refine-

ment of almighty god for concealed hand yet substantial supervision althrough

the dissertation. I would like to expressed our sincere thanks to Mrs.ANSLIN

T M, Assistant Professor, Department of Mathematics, St. Gregorios College,

Kottarakkara for her inspiring guidence and support to complete this dissertation.

I also wish to express my profound thanks to Mrs. BEENA G P, Head of the

Department and all other teachers of mathematics Department for their constant

help throughout the course of this work. I extend our sincere thanks to our librar-

ian and other non - teaching staffs for their co-operation and support. Above all

I would like to express my sincere gratitude and thanks to my family members,

all my friends and well-wishers for their valuable comments and suggestion and

making this work a success.

KOTTARAKKARA AVANI S

Date:



ABSTRACT

Through this project, we present a concise study on a regular semigroup. A regular

semigroup is a semigroup S in which every element is regular. That is for each a

in S there exist an element x in S suchthat axa = a. We analyse the properties

related to regular semigroup including treatment of equivalence, congruence and

also discuss about structure of regular semigroup and its some classes. Regular

semigroups are one of the most studied class of semigroup and their structure is

particularly amenable to study via Green’s relations.
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Introduction

Regular semigroup are one of the most studied classes of semigroup and their

structure is amenable to study via Green’s relations.Regular semigroups were in-

troduced by J. A Green in his influential 1951 paper ”On the structure of semi-

groups”; this was also the paper in which Green’s relation were introduced. The

concept of regularity in a semigroup was adopted by John von Neumann.

Through this project we discuss about the regular semigroup and its general

properties, structure and some class of regular semigroups.

The first chapter introduced the basic concepts of semigroup and Green’s rela-

tion in semigroup.

The second chapter introduces the regular semigroup and its general properties

and also discuss the representation of regular semigroup and the concept of strict

regular semigroup.

The third chapter introduces a class of regular semigroup named as completely

regular semigroup which deals with Clifford decomposition, Clifford semigroup

and Band.The fourth chapter discuss other classes of regular semigroups ; Locally

inverse, Orthodox, Semiband and its properties. This gives a deep information

about regular semigroup.
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Chapter 1

Preliminary

In this chapter we give certain basic definitions and examples that we need in the

sequel. For the notations and terminologies we, [2],[3],[4]

1.1 Semigroup

Definition 1.1.1. A binary operation on set S is a map · : S × S → S. This

operation is associative if x · (y · z) = (x · y) · z for all x, y, z ∈ S. A semigroup is

nonempty set equipped with an associative binary operation denoted by (S, .).

Definition 1.1.2. A semigroup S is said to be a commutative semigroup, xy = yx

for all x, y∈ S.

Definition 1.1.3. If S is a semigroup contains an element 1 such that

1.x = x = x.1 for all x ∈ S, then 1 is called identity of S.

Note 1.1.4. The semigroup S with identity 1 is called monoid.

Result 1.1.5. Every group is a monoid

Definition 1.1.6. If a semigroup S with at least two elements contains an element

0 such that 0x = 0 = x0 for all x ∈ S, then we say 0 is a zero of S and S is called

a semigroup with zero.

3



1.1. Semigroup 4

Note 1.1.7. If S is a Semigroup without 0 then we adjoint an extra element 0 to

S we define an operations, 0x = x0 = 0 and 0.0 = 0,for all x ∈ S. Then S ∪ {0}

is a semigroup with 0 we define

S0 =

S if S has already 0

S ∪ {0} otherwise

Note 1.1.8. If S is a semigroup without identity then we adjoint an extra element

1 to S form a monoid we define, x · 1 = 1 ·x = x for all x ∈ S and 1 · 1 = 1. Then

S ∪ {1} is a monoid and denote

S1 =

S if S has already identity

S ∪ {1} otherwise

Theorem 1.1.9. A semigroup with zero 0 then 0 is unique.

Note 1.1.10. Let x ̸= ϕ and Tx = { f : f : x → x} then Tx is a monoid, where

binary operation is composition if mapping. That is if f, g∈ Tx, fg : x → x by

x(fg) = (xf)g, then semigroup Tx is called the full transformation semigroup.

Definition 1.1.11. Let S be a semigroup and T ⊆ S then T is said to be a

subsemigroup of S if T is closed under multiplication, that is for all

a, b ∈ T ⇒ ab ∈ T

Definition 1.1.12. If S is a semigroup containing an element e such that e2 = e,

then {e} is subsemigroup of S and e is called idempotent of S.

Definition 1.1.13. Let S be a semigroup and A ⊆ S then A is said to be a left

ideal [right ideal] of S if SA ⊆ S [AS ⊆ S].

. In other words for all a ∈ A, s ∈ S, sa ∈ A [as ∈ A].

If A is both left and right ideal of S, then A is called an ideal of S.

Definition 1.1.14. A homomorphism of a semigroup S into a semigroup T is a

mapping ψ : S → T which preserves the property;

ψ(xy) = ψ(x) ψ(y) , for all x, y ∈ S.
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Proposition 1.1.15. For an equivalence relation C on a semigroup S is following

are equivalent :

1. There is a semigroup operation on S|C such that the projection S → S|C is

a homomorphism:

2. C admits multiplication (aC c, bC d ⇒ ab C cd):

3. C admits multiplication on left (aC b ⇒ xa C xb) and on the right

(a C b ⇒ ax C bx).

Definition 1.1.16. A congruence on a semigroup S is a equivalence relation C

on S which satisfies the equivalence condition1.1.15 The resulting semigroup S|C

is the quotient of S by C .

The left congruence is a equivalence relation C which admits multiplication on the

left (a C b ⇒ xa C xb) and a right congruence is an equivalence relation C which

admits multiplications on the right (a C b ⇒ xa C xb).

Definition 1.1.17. Let S be a semigroup if S has no ideal other than itself S said

to be simple.

Definition 1.1.18. S be a semigroup with a zero then S is a 0 - simple with fol-

lowing conditions ;

1. S2 ̸= 0

2. S has no ideals except 0 and itself.

Definition 1.1.19. A semigroup S is called completely simple if it is a simple and

contains a primitive idempotent.
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Note 1.1.20. • Left translation of S is a mapping λ : S → S such that

λ(xy) = (λx)y for all x, y ∈ S. If λ , µ are left translations then so is λµ

since λ(µ(x, y)) = λ((µx)y = (λ(µx)y) for all x, y ∈ S.

• Right translation of S is a mapping ρ : S → S such that (xy)ρ = x(yρ) for

all x, y ∈ S.

• The left translation λ and right translation ρ are linked in case x(λy) =

(xρ)y, for all x, y ∈ S.

Definition 1.1.21. The translation hull of S is the set Ω(S) of all ordered pairs

(λ, ρ ) [called bi translation] of linked left and right translation λ and ρ of S.

Note 1.1.22. If (λ, ρ ), (ρ,σ) ∈ Ω(S) then x(λ(µy)) = (xλ) (µy) = (xρ) (σy)

for all x, y ∈ S.Hence Ω(S) is a semigroup under pointwise operation,

(λ, ρ) = (λ µ, ρσ)

Definition 1.1.23. A bicyclic semigroup is an inversion of semigroup such as

monogenic that is, generated by a single element. The Idempotents of the bicyclic

semigroup form a chain, which is ordered with respect to the type of positive num-

bers.

Definition 1.1.24. An inverse semigroup is a semigroup S such that gor every

element s ∈ S there exists a unique ”inverse ” s′ ∈ S such that ss′s = s and

s′ss′ = s′. It is evident from this that s′′ = s

Result 1.1.25. The idempotents in the inverse semigroup form a subsemigroup

which is commutative and idempotent.Then for any idempotents e, f we define an

order ≤ on idempotents by e ≤ f if and only if e = ef.

Proposition 1.1.26. Let S be a regular semigroup with set E of idempotents and

e, f ∈ E.Then the set S(e, f), defined by

S(e, f) = {g ∈ V (ef) ∩ E : ge = fg = g} is nonempty.
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Definition 1.1.27. The set S(e, f) is called the sandwich set of e and f. It has

obvious alternative characterization, S(e, f) = {g ∈ E : ge = fg = g, egf = ef}.

Proposition 1.1.28. Let e, f and g be idempotents in a regular semigroup.

1. If eL f then S(e, g) = S(f, g);

2. if eRf then S(g, e) = S(g, f).

Proposition 1.1.29. Let e, f be idempotents in a regular semigroup S. Then S(e,f)

is a subsemigroup of S and is a rectangular band.

Theorem 1.1.30. Let a be an element of a regular D-class D in a semigroup S.

1. If a′ ∈ V (a), then a′ ∈ D and the two H-classes Ra ∩ L′
a, La ∩ R′

a contain,

respectively, the idempotents aa′ and a′a.

2. If b in D is such that Ra ∩ Lb and La ∩Rb contain idempotents e, f , respec-

tively, then Hb contains an inverse a∗ of a such that aa∗ = e, a∗a = f .

3. No H-class contains more than one inverse of small a.

Proposition 1.1.31. If U is a regular subsemigroup of semigroup S, then LU =

LS ∩ (U×U), RU = RS ∩ (U×U),HU = HS ∩ (U×U).

Proposition 1.1.32. Let S be a semigroup. Then the following statements are

equivalent:

1. S is completely simple;

2. S is completely regular, and, for all x, y in S, xx−1 = (xyx)(xyx)−1

3. S is completely regular and simple.

Corollary 1.1.33. If e is an idempotent in a semigroup S, then He is a subgroup

of S. No He - class in S can contain more than one idempotent.

Corollary 1.1.34. A semigroup S is simple if and only if SaS = S for all a in

S, that is, if and only if for every a, b in S there exist x, y in S such that xay = b.
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Lemma 1.1.35. S is regular, and has exactly two D - classes, namely {0} and

D = S|{0}. If a,b D, then either ab= 0 or ab ∈ Ra ∩ La. The latter occurs if and

only if La ∩Rb contains an idempotent.

Theorem 1.1.36. Let S be a semigroup without zero. Then the following condi-

tions are equivalent:

1. S is completely simple;

2. S is regular, and has the ’weak cancellation’ properties : for all a, b, c in S,

[ca = cb and ac = bc] ⇒ a = b

3. S is regular, and for all a in S, aba = a⇒ bab = b

Definition 1.1.37. A semilattice is a commutative, idempotent semigroup. That

is a commutative band.

1.2 Green Relation on Semigroup

Definition 1.2.1. Green’s preorder on semigroups are

a≤L b ⇒ a = ub for some u∈ S1

a≤Rb ⇒ a = bv for some v ∈ S1

a≤H b ⇒ a = ub = bv for some u, v, ∈ S1

a≤J b ⇒ a = ubv for some u, v ∈ S1

each relation is preorder.

Note 1.2.2. • In pre-order a≤b implies a is a multiple of b in same sense.

• If S has a zero element and an identity element then 0≤x≤1 for all x∈S

under all four pre-order0

• a≤L b also written a≤L , a≤b (L ) or La ≤ Lb

Similarly a≤R also written a≤R b, a≤ b (R) or Ra = Rb.

Similarly for ≤H , ≤J .
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Definition 1.2.3. Green’s pre-order can be defined in terms of ideals of S. A left

ideal of S is a subset L⊆ S such that SL ⊆ L. A right ideal of S is subset R⊆ S

such that RS ⊆ R.

Result 1.2.4. Green’s preorder ≤H induces a partial order on the set of idempo-

tents called the Rees order.

Proposition 1.2.5. A partial order on set E(S) of idempotents of semigroup S

defined by e ≤ f ⇐⇒ e ≤R f ⇐⇒ ef = fe = e.

Definition 1.2.6. Green´s relation on semigroup S are equivalence relation L ,

R , H , J ,

aL b ⇐⇒ a≤L b and b≤L a ⇐⇒ S1a = S1b

aR b ⇐⇒ a≤R b and b≤R a =⇒ aS1 = bS1

aH b ⇐⇒ a≤H b and b≤H a ⇐⇒ aL b and aR b

aJ b ⇐⇒ a≤J b and bJ a ⇐⇒ S1aS1 = S1bS1

Thus H = L ∩ R ⊆ L , R ⊆ J , L is right congruence (aL b ⇒ ac L bc)

since S1a = S1b ⇒ S1ac = S1bc, dually R is a left congruence (aR b ⇒ ca R cb ).

Definition 1.2.7. Green´s preorders induces partial order relations on the quo-

tient set S|L , S|R , S|H , S|J ;

by defenition,

La ≤ Lb ⇐⇒ a≤L b

Ra ≤ Rb ⇐⇒ a≤R b

Ha ≤ Hb ⇐⇒ a≤H b

Ja ≤ Jb ⇐⇒ a≤J b

when La (Ra, Ha, Ja) denotes L - (R , H , J ) class of a.

Proposition 1.2.8. For all a, b ∈ S

, aL x R b for some x ∈ S ⇐⇒ aR y L b for some y ∈ S. Hence the binary
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relation D defined by

aDb⇐⇒ aL xRb for x ∈ S

⇐⇒ aRyL b for y ∈ S is an equivalence relation.

Result 1.2.9. The fifth Green´s relation D is defined by 1.2.8

Note 1.2.10. D is reflexive, symmetric, transitive since

a D b D c ⇒ a L x R b L y R c for some x, y ∈ S, aL x L z R y R c for

some z ∈ S and aD .

Lemma 1.2.11. For an element a of a semigroup S the following are equivalent :

1. a ha an inverse;

2. axa = a for some x ∈ S;

3. Ra contains an idempotent;

4. La contains an idempotent ;

Result 1.2.12. A element a of S is regular in case it satisfies 1.2.11

Result 1.2.13. A D - class is regular when D is regular.

Proposition 1.2.14. A J - class J which contains idempotents e > f contains

a bicyclic subgroups.

Proposition 1.2.15. [Hall ’s J - class theorem ] - Let A and B be J - classes of

S such that A ≥ B in S|J and every element of B is regular. For each Idempotent

e of A there exist an idempotent f of B such that f ≤ e.



Chapter 2

Regular Semigroup

2.1 Regular Semigroup

Definition 2.1.1. A semigroup S is called regular if for each element a belongs

to S there exist x belongs to S suchthat a = axa.

• In the case there exist a′ belongs S suchthat both

a = aa′a and a′ = a′aa′ are satisfed such an element a′ is called inverse for

a; the set of inverse of a is denoted by v(a) = {x ∈ S : a = axa, x = xax}.

• A regular semigroup is called inverse if each element has unique.

• Let V(x) denote the set of all inverse S and E(x) denote the set of all idem-

potents of S.

2.2 General Properties

Lemma 2.2.1. [Lallement’s Lemma] Let S be a regular semigroup and

ψ :S → T be a homomorphism. Every idempotent ψ(x) of im ψ is the image under

ψ of an idempotent e ≤H x of S.

Proof. Assume that ψ(x) is idempotent.Let y ∈ v(x2) and e = xyx. Then e is

idempotent.(since yxxy = y) e ≤R x, e ≤Z x and

ψ(e) = ψ(xyx) = ψ(x2yx2) = ψ(x2) = ψ(x).

11
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Proposition 2.2.2. Let S be regular semigroup and ψ : S → T be a homomor-

phism.Then kerψ ⊆ H iff ψ seperates the idempotents of S.

Proof. Assume that ψ seperates the idempotents of S [ if e ̸= f in E(S), then

ψ(e) ̸= ψ(f)].

Let ψ(x) = ψ(y) and x′ ∈ V (x).Then, ψ(x′y) = ψ(x′x)∈ E(T ). By Lallement’s

lemma, ψ(x′y) = ψ(e) for some idempotent e ≤H x′y. Since ψ separates the

idempotents of S it follows that x′ x = e and xL e ≤L x′y ≤L y. Dually x≤Ry.

Exchanging x and y then yields xH y.Thus kerψ ⊆ H .The converse is clear

sincean H - class contains at most one idempotent.

Proposition 2.2.3. Every regular semigroup S has a smallest group congruence

G .

Proof. : In a regular semigroup, every L - class andR - class contains an idempo-

tent.Hence a regular semigroup which contains only one idempotent has only one

H - class and is necessarily a group. Thus a congruence C is a group congruence

iff S/C contains only one idempotent : by Lallement’s lemma, this happens iff

E(S) is contained in C - class.

Therefore is a smallest congruence on S with this property.

Proposition 2.2.4. Every regular semigroup S has a smallest inverse congruence

I .

Proof. A regular semigroup is an inverse semigroup iff its idempotent commute.

Hence a congruence C on S is an inverse congruence iff the idempotents of S/C

commute ; by Lallement’s lemma, this happens if and only if efC fe for every

e, f ∈ E(S).

Therefore there is a smallest congruence on S with this property.

Proposition 2.2.5. An order realation on any regular semigroup S is

defined by :
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x ≤ y ⇐⇒ (a)x ≤R y and x = ey for some e ∈ E(Rx)

⇐⇒ (b)x ≤L y and x = yf for some f ∈ E(Lx)

⇐⇒ (c)x ≤H yandx = xy′x for all y′ ∈ v(x)

⇐⇒ (d)x ≤H yandx = xy′xforsomey′ ∈ V (x)

If x ≤ y, then for each f ∈ E(Ry) = E(s)∩ (Ry) there exists g∈ E(Rz) suchthat

g ≤H f and x = gy.

Proof. First we show that (a), (b), (c) and (d) are equivalent. Assume (a), e ≤R

y and x = ey for some e ∈ E(Rx). If f ∈ E(Rx), then e ≤R f , fe = e = efe,

ef ∈ E(Re) = E(Rx) ef ≤H e, and x = efy (Since fy = y).Thus (1) implies the

last part of the statement. Now let y′ ∈ V (y). Then there exists g ∈ E(Rx) such

that g ≤H yy′ and x = gy;hence x = gyy′gy = xy′x .Also x = ey≤L y, so x ≤H

y.Thus (a) implies (c). Clearly (c) implies (d). Next assume (d), x ≤H y and x

= xy′x for some y′∈ V (y).Then x ≤R y, xy′ ∈ E(Rx), and x = (xy′)x. Thus (d)

implies (a). Dually, (b), (c), and (d) are equalent.

To prove ≤ is an order relation we use (a). Since S is regular, each Rx contains

an idempotent e, and then x = ex shows x ≤ x. If x ≤ y≤ z, so that x ≤R y≤Rz

and x = ey, y = fz for some e∈ E(Rx), f ∈ E(Ry) Then e ≤R f , fe = e = efe,

ef∈ E(Rx),x = efz, and x ≤ z.

Result 2.2.6. The natural order on a regular semigroup is the order relation 2.2.5.

Proposition 2.2.7. In regular semi group S :

1. if e, f∈ E(S), then e ≤ f in the natural order if and only if e ≤ f in the

Rees order ;

2. x ≤ e∈ E(S) implies x ∈ E(S);

3. x ≤ y and xR y ( or xL y) implies x = y ;

4. if x ≤ y, then for each y′∈ V (y) there exists x′ ∈ V (x) suchthat x′≤y′.
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Remark. A regular semigroup is completely semisimple in case all its principal

factors are completely simple or completely semi simple.

Proposition 2.2.8. A regular semigroup S is completely semisimple if and only

if x ≤ y and xDy in S implies x = y.

Proof. Since S is regular its principal factors are not null and are simple or 0 -

simple. Hence S is completely semisimple if and only if all nonzero idempotents

in the principal factors are primitive ; equivalently, if no J - class J of S contains

idempotents e > f .Then the last part of 2.2.5 shows that x ≤ y and xDy implies

x = y.

If conversly S is not completely semisimple,then 1.1.15 one of its J - classes

contains a bicyclic subsemigroup T of S ; Since T is bisimple, T is contained in a

simple D - class, which then contains idempotents e > f .

Remark. A regular semigroup is primitive when all its nonzero idempotents are

primitive.

Proposition 2.2.9. A regular semigroup is primitive if and only if all its nonzero

elements are primitive.

Note 2.2.10. 1. Since S/J is directed down, a primitive regular semigroup

without zero is completely simple.

2. Let (Si)i∈I be any set of semigroups with zero such that Si∩Sj = O whenever

i ̸= j. The 0-direct union of the semigroups S, is the disjoint union

S = (∪i∈ISi|0)∪{0} in which each Si is a subsemigroup of S and SiSj= 0

whenever i ̸= j. If every Si is completely 0-simple, then S is primitive.

Theorem 2.2.11. A regular semigroup with zero is primitive if and only if it is

a 0-direct union of completely 0-simple semigroups.

Proof. Let S be primitive regular and J be a nonzero J -class of S. By Hall’s J

- class Theorem (preposition 1.2.15). Jx < J in S/J implies Jx = 0.

Hence S ′JS ′ = J ∪ {0} and Pj is a subsemigroup of S. Also Ja ̸= Jb implies

Jab ≤ Ja, Jb and ab = 0. Therefore S is the 0-direct union of its principal factors.
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2.3 Petrich Representation

Definition 2.3.1. Petrich representation is represents a regular semigroup S by

bitranslation of the traces of its D - classes, so that S can be described in terms of

translation hulls of completely simple and 0 - simple semigroup.

Note 2.3.2. 1. Let S be any semigroup and D be regular D - class of S with

trace T = TD = D∪{o}. Let * denote the multiplication on T.

Then a * b = ab if a, b ∈ D and ab ∈ Ra∩Lb, otherwise a * b = 0 for each

s∈ S and a∈ T define λsa = λsDa = sa if sa L a∈ D ,0 Otherwise.

aρs = aρsa = as if as Ra ∈ D, 0 Otherwise. and χs = χs
D = ( λs, ρs).

Lemma 2.3.3. χD is a homomorphism of S into Ω(TD).

Proof. Let a, b ∈ T . If a = 0 or b= 0, then λs(a∗b) = 0 = (λsa)∗b. Assume a, b ∈ D.

If (λsa) ∗ b ̸= 0, then saL a, sa ∗ b = sab ∈ Rsa ∩ Lb, La ∩Rb = Lsa ∩Rb contains

an idempotent, ab ∈ Ra ∩ La, sab ∈ Rsa ∩ Lab, and λs(a ∗ b) = sab = (λsa) ∗ b.

Conversly assume λs(a ∗ b) ̸= 0.Then a ∗ b = ab ∈ Ra ∩ Lb and sab ∈ Lab = Lb.

Hence a = abu, ab = vsab for some u, v ∈ S, a = abu = vsabu = vsa, and saL a.

Then sab ∈ Rsa, since R is a left congruence, and (λsa) ∗ b = sab = λs(a ∗ b).

Thus λs is a left translation of T.

Dually ρs is a right translation of T. Let ab ∈ D;assume (aρs) ∗ b ̸= 0. Then

asRa and as ∗ b = asb ∈ Ras ∩ Lb = Ra ∩ Lb. Hence sbL b (since asbL b),

asb ∈ Ra∩Lsb, and a∗ (λsb) = a∗sb = asb = (aρs)∗b. Dually a∗ (λsb) ̸= 0 implies

(aρs) ∗ b = a ∗ (λsb). Therefore λs and ρs aare linked and χs = (λs, ρs) ∈ Ω(T ).

Finally let s, t ∈ S. If λsta ̸= 0,then staL a ∈ D, so that taL a and λs(λta) =

λs(ta) = sta = λsta. If Conversly λs(λta) ̸= 0,then a ∈ Db, taL a, and staa, so

that sta and λsta = sta = λs(λta). Dually ρst = ρsρt, and χ is a homomorphism.

Note 2.3.4. Given a semigroup T, call a subsemigroup B of ω(T ) bitransitive in

case, for all a, b ∈ T , aL b implies a = βb., b = β′a for some β, β′ ∈ B1,and

dually aRb implies a = bβ, b = aβ′ for some β, β′ ∈ B1.
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Lemma 2.3.5. χD is a bitransitive subsemigroup of Ω(TD).

Definition 2.3.6. The Petrich representation of S is the homomorphism

χ : S → ΠD∈s/D Ω(TD) defined by χs = (χs
D)D∈s/D .

Theorem 2.3.7. When S is regular, χ is injective homomorphism.

Proof. Assume χs = χt and let x be an inverse of s. With D = Ds = Dx we have

sxL x, λsx = sx∈ D, λtx =sx ̸= 0 and tx = sx. Dually xs R x and xt = x ρt =

xρs = xs.Then sRsx = tx≤R t. Exchanging s and t yields s R t.Hence t R sx =

(sx)2 and t = sxt = sxs = s.

Result 2.3.8. Therorem 2.3.7follows that regular semigroup S is a subdirect prod-

uct of the semigroup χD(S) by 2.3.5.

Corollary 2.3.9. Every regular semigroup S is subdirect product of the semigroups

χD(S), each of which is a regular bitransitive subsemigroup of the translational hull

of a completely simple or completely 0 - simple semigroup.

Proof. In a completely 0-simple semigroup, ab ∈ La ̸= O implies ab ∈ Ra ̸= 0 and

conversely. A completely semisimple semigroup S has similar property: if ab in

S with aJ b, then b = tab for some t ∈ S, ea = a for some idempotent e ∈ D,

b = teab, te ∈ Ja, since b ≤J teab ≤J te ≤J , abL ̸= 0 in the principal factor of

Ja = Jb, abRa in the principal factor, and abRa in S. Dually, abR a implies abL

b when aC b. It follows that χs
D is innerbitranslation of s when s ∈ D. If D is no

the kernal of S, then χs
D = 0 for some s and χD(x) is an extension type of TD.

2.4 Strict Regular Semigroup

Definition 2.4.1. Regular semigroup which are subdirect products of completely

simple and 0 - simple semigroups are sometimes called Strict regular semigroups.

Theorem 2.4.2. For a regular semigroup S the following conditions are

equivalent :
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1. S is a subdirect product of completely simple and completey 0 - Simple semi-

group ;

2. for every J - classes A ≥ B and idempotent e∈ A there is exactly one

idempotent f ∈ B such that e ≥ f ;

3. for every J - classes A ≥ B there is for each x ∈ A exactly one y ∈ B such

that x ≥ y.

Either conditions implies that S is completely semisimple.

Proof. First assume that S is a subdirect product S ⊆ Πi∈I Si of completely simple

and 0 - simple semigroups (Si)i∈I . Each element a of S is surjective

homomorphism S −→ Si.

Let A and B be J -clases such that A ≥ B in S/J .

Let e∈ E(A) = E(S)∩A. By Hall’s J - class theorem (1.2.15), there is idempotent

f∈ E(B) suchthat e ≥ f . Suppose that f, g ∈ E(B) and e ≥ f, g. Since f J

g we have fiJ gi for every i. which in the completely 0 - simple semigroup Si

implies either

fi = gi = 0 or fi, gi ̸= 0 ; in the second case ei ≥ fi, gi implies fi = gi, since all

nonzero idempotents of Si are primitive.Hence f = g and we have proved that (1)

implies (2).

Now assume (2). Let A ≥ B be J - classes ; for each idempotent e∈ A denote

by e the unique idempotent g∈ B suchthat e ≥ g. The following Lemma shows

that (3) holds.

Lemma 2.4.3. Let A ≥ B be J - classes, x ∈ A, e ∈ E(Rx), and z ∈ B. Then

e R ex ; ez = z ; implies ez = z ; and z ≤ x iff z = ex.

Proof. Assume ez = z. If z′ ∈ V (z), Then ez = z implies z′ e ∈ V (z) and zz′

e ∈ E(Rz) ⊆ E(B).Then zz′ e ≤ e yields zz′ e = e and ez = zz′ ez = z.

Let y = e x. Then e R x implies e = e e Rex, y ∈ B,

e ∈ Ry, y ≤ e ≤ e ≤R x and y ≤ x. If coversly z ∈ B, z ≤ x, then by 2.2.5

thereexist f ∈ Rz suchthat f ≤ e and z = fx ; then f = z and z = ex.
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Lemma 2.4.4. Let A ≥ B be J - classes of a strict regular semigroup.

Let ψB
A : A −→ B assign to each x ∈ A the element y ∈ B suchthat y ≤ x, then

ψB
A is a partial homomorphism. Furthermore ψA

A is identity on A ;

if A ≥ B ≥ C, then ψC
B o ψB

A = ψC
A and xy = x1y1 = ψC

A(x) ψC
B(y) when

A = Jx , B = Jy , C = Jxy and x ≥ x1 ≥ ψC
A(x) , y ≥ y1 ≥ ψc

B(y).

Proof. As above denote ψB
A(x) by x. By 2.4.2 x = ex whenever e ∈ E(Rx) Dually

x = xy whenever y ∈ E(lx). Assume x, y, xy ∈ A and let e ∈ E(x) , f ∈ E(Ry).

Then xy = xfy, so x ≤J xf ≤J xfy and xf ∈ A.Since PA is completely simple

or 0 - simple by 2.4.3,we have xf ∈ Lf , xf ∈ Rx = Re, Hence, xf = xff = xf ;

xf = exf = exf = xf ; and xy = exy = exfy = xfy = xfy = xy.

Thus ψB
A is a partial homomorphism. It is clear that ψA

A is the identity on A

and that ψC
B o ψB

A = ψC
A when A ≥ B ≥ C.Now let x, y ∈ S and A = Jx,

B = Jy, C = Jxy. Let s denote ψC
J(s)and take e ∈ E(Rx), f ∈ E(Ly).Then e(xy)

= xy = (xy)f and xy = exyf = exyf = xy, by 2.4.2.If x ≥ x1 ≥ x, y ≥ y1 ≥ y,

then x1 = x, y1 = y and xy ≥J x1y1≥J xy so that x, y ∈ C and x1y1 = x1 y1 = x

y = xy

Definition 2.4.5. A Tree is partialy ordered set T in which each principal ideal

{ x ∈ T : x ≤ t} is a chain. Equivalently, x, y,≤ t implies x ≤ y or y ≤ x.

Definition 2.4.6. tree T the height h(t) of an element t is number of elements of

chain {x ∈ T : x < t}.

Result 2.4.7. If t has finite height, then either t is minimal ( if h(t) = 0 ) or

there is greatest x < t , the predecessor of t.

Result 2.4.8. If S is strict regular semigroup and tha S/J is a tree in which

every element has finite height.
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Theorem 2.4.9. [Lallement and Petrich] The following conditions on a semi-

group S with zero are equivalent :

1. S is regular and its idempotents form a tree in which every element has finite

height ;

2. S is a strict regular semigroup and its J - classes form a tree in which every

element has finite height ;

3. S is a tree of completely 0 - simple semigroups.

Proof. It is clear that (2) =⇒ (1). Conversly assume that (1) holds. S is completely

semisimple, since a principal factor of S cannot contain a bicyclic subsemigroup

with its infinite descending chain of idempotents. S is strict regular (2) of theorem

2.4.2 holds. S/J is a tree in which every element has finite height. since A > B

in S/J =⇒ e > f , for some idempotents e∈ A , f ∈ B.

Thus (1) =⇒ (2).

It follows from lemma 2.4.4 that (2) =⇒ (3).

Finally let S be a tree of completely 0 - simple semigroup St(t ∈ T ), where T is a

tree in which every element has finite height. By definition every nonzero product

in St is a product in S; therefore S is regular. Also an ideal of S which contains x ∈

Si|0 also contains ψi(x) and intersects Su|0 for every u < t. Hence the principal

ideal generated by x ∈Si|0 is
⋃

u≤tSu|0. Thus the J - classes of S are the sets

Jt = St|0 and S/J ∼= T .

It remains to show that S is a strict regular semigroup. We prove properly (2)

in 2.4.2.Let e ∈ Jt and u ≤ t. As before there is an idempotent f ∈ Ju such

that f ≤ e. It remains to show that f is unique. If t = u then f = e since the

idempotents of St are primitive. Otherwise t > u and we prove the uniqueness of

f by introduction on the height of t.

If f ≤ e, then f = e = ψt(e)f , f = fe = fψt(e) and f ≤ ψt(e), where ψ(e)≤ St

is an idempotent, hence f is a unique by induction hypothesis.
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Completely Rgular Semigroup

Note 3.0.1. A group (G, µ) can alternatively be regarded as having three opera-

tions, namely the binary operation µ : (a, b) → ab, the unary operation a → a−1,

and the 0-ary operation (the constant) 1. If we wish to emphasize this aspect, we

write G = (G, µ−1, 1). From this point of view, a morphism ϕ : G → H between

two groups is defined by the properties

(ab)ϕ = (aϕ)(bϕ), (a−1)ϕ =(aϕ)−1, 1ϕ = 1.

Definition 3.0.2. A semigroup (S, µ) will be called a U-semigroup if a unary

operation a→ a′ is defined on S, with the property that (a′)′ = a,for every a in S.

We write S = (S, µ, ′).

Result 3.0.3. Every semigroup may be regarded as a U- semigroup: the most

obvious approach is to define a′ = a for every a in S.

Note 3.0.4. The unary operation must interact in some way with the binary

operation. Two versions of interaction are the first, in which a′ is usually denoted

by a∗, gives us a ∗−semigroup, or a semigroup with involution ; here the properties

of the unary operation are given by

(a∗)∗ = a, (ab)∗ = b∗a∗.The second, in which we shall write a′ as a−1,gives us what

we shall call an I-semigroup; here the properties are

(a−1)−1 = a, aa−1a = a.

Since these equations are to hold for every element of S, it follows

(a−1)−1 = a, aa−1a = a, and so a−1 is an inverse of a.

20
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3.1 The Clifford decomposition

Definition 3.1.1. A semigroup S will be called completely regular if there exists

a unary operation a→ a′ on S with the properties

(a)−1 = a, aa−1a = a, aa−1 = a−1a.

Proposition 3.1.2. Let S be a semigroup. Then the following statements are

equivalent:

1. S is completely regular;

2. every element of S lies in a subgroup of S;

3. every H - class in S is a group.

Proof. (1) ⇒ (2).Let a ∈ S, and let aa−1 = a−1a = e. Then, by Theorem 1.1.30,

a ∈ Re ∩ Le = He, and He is a subgroup of S by Corollary 1.1.33.

(2) ⇒ (3). Let a ∈ S; then a ∈ G for some subgroup G of S. Denote the identity

element of G by e, and the inverse of a within G by a∗. Then from

ea = ae = a and aa∗ = a∗a = e

it follows that aHe, and hence Ha = He, a group.

(3) ⇒ (1).For each a in S, define a−1 to be the unique inverse of a within the

group Ha. (Notice that the element a may have several inverses in S, but only one

of them lies in Ha.) Then it is clear that (a−1)−1 = a, aa−1a = a, aa−1 = a−1a,

and so S is completely regular.

Proposition 3.1.3. Let S be a semigroup. Then the following statements are

equivalent:

1. S is completely simple;

2. S is completely regular, and, for all x, y in S, xx−1 = (xyx)(xyx)−1.

3. S is completely regular and simple.

Proof. (1) ⇒ (2) Let S be completely simple, and for each a in S, let a−1 be the

unique inverse of a lying inside Ha. Let x, y ∈ S. Then by Lemma 1.1.35, applied
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to the case where 0 is indecomposable, we deduce that xyxHx, and it then follows

that xx−1 = (xyx)(xyx)−1, as required.

(2) ⇒ (3).Let a, b ∈ S. Then

xx−1 = (xyx)(xyx)−1

and so Ja ≤ Jb. By interchanging the roles of a and b we may equally well show

that Jb ≤ Ja. It follows that J = S x S, and so S is simple. (3) ⇒ (1). Suppose

that S is completely regular and simple. We shall show that every idempotent of

S is primitive, from which it will follow, by Theorem 1.1.36, that S is completely

simple. Accordingly, let e, f be idempotents in S, and suppose that f ≤ e, so that

ef = fe = f . Then,

since S is simple, there exist z, t in S such that e = zft. (See Corollary 1.1.34)

We now produce ’improved’ versions of z and t by defining x = exf

and y = fte; we still have,

xfy = (ezf)f(fte) = e(zft)e = e3 = e,

but now have the extra advantage that ex = xf = x and fy = ye = y. Now S

is completely regular and so, by Proposition 3.1.2, the element x belongs to Hg

for some idempotent g.Thus gx = xg = x, and there exists x−1 in Hg, such that

xx−1 = x−1x = g. As a consequence, gf = x−1xf = xx−1 = g. But we also have

gf = gef = gxfyf = xyf = ef = f,

and so g = f .Hence

f = fe = ge = gxfy = xfy = e.

We have shown that f ≤ e implies fe for every pair of idempotents in S. Thus

every idempotent in the non-empty set of idempotents of S is primitive, and so S

is completely simple as required.

Theorem 3.1.4. Every completely regular semigroup is a semilattice completely

simple semigroups.
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3.2 Clifford semigroup

Definition 3.2.1. A Clifford semigroup is defined as a completely regular semi-

group (S,,-1) in which, for all z, y in S

(xx−1)(yy−1) = (yy−1)(xx−1).

Note 3.2.2. In an arbitrary semigroup S, let us say that an element c is central

if cs = sc for every s in S. The set of central elements forms a subsemigroup of S,

called the centre of S.

Theorem 3.2.3. Let S be a semigroup with set E of idempotents. Then the

following statements are equivalent:

1. S is a Clifford semigroup;

2. S is a semilattice of groups;

3. S is a strong semilattice of groups;

4. S is regular, and the idempotents of S are central;

5. S is regular, and DS ∩ (E×E) = 1E.

Proof. (1) ⇒ (2). Let S be a Clifford semigroup. Then S is completely regular,

and so is a semilattice Y of completely simple semigroups S. Now every idempo-

tent e in S is expressible as xx−1 for some x the obvious choice for x is e itself and

so the condition in above defenition (3.2.1) says that idempotents commute. This

happens within each of the components Sα and so each Sα, being a completely

simple semigroup in which idempotents commute, is a group. Thus S is a semi-

lattice of groups.

(2) ⇒ (3). For each α in Y let eα be the identity element of Sα (a ∈ Y ). Suppose

now that α ≥ β. Then for each α in Sα the product eβaα, belongs to Sαβ = Sβ,

and so it makes sense to define a map ϕα,β : SαSβ by the rule that aαϕα,β = eαaα.

It is clear that ϕα,β is the identity map on Sα.Also ϕα,β, is a morphism. To see

this, notice that for every aα, bα in Sα,

(aαϕα, β)(bαϕα, β) = (eβaα)(eβbα) = ((eβaα)eβ)bα.
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Now eβaα ∈ Sβ and eβ is the identity of

Sβ. So (aαϕα,β)(bαϕα,β) = eβaαbα = (aαbα)ϕα,β,

as required.

Next, suppose that α ≥ β ≥ γ and notice, by a standard property of group mor-

phisms, that, for all α in Sα,

(aαϕα,β)ϕβ,α = eγ(eβaα)

= (eγeβ)aα = (eβϕβγ)aα

= eγaα = aαϕα,γ

thus ϕα,βϕβ,γ = ϕα,γ as required.

Finally, notice that, for arbitrary α and β in Y and for elements aα in Sα and bβ

in Sβ, the product aαbβ lies in Sγ, where γ = αβ. Hence

aαbβ = eγ(aαbβ) = (eγaα)bβ

= ((eγaγ)eγ)bγ

= (eγaα)(eγbβ) = (aαϕα,γ)(bβϕβ,γ

and so S is indeed isomorphic to the strong semilattice of groups S[Y ;Sα;ϕα,β]

(3) ⇒ (4) Certainly every strong semilattice of groups S[Y ;Gα;ϕα,β] is a regular

semigroup. Its idempotents are the identity elements eα, of the groups Gα, and it

is easy to calculate that, for all β in Y and all gβ in Gβ,

eαgβ = (eαϕα,αβ)(gβϕβ,αβ) = eαβ(gβϕβ,αβ) = gβϕβ,αβ,

gβeα = (gβϕβ,αβ)(eαϕα,αβ) = (gβϕβ,αβ)eαβ = gβϕβ,αβ;

thus idempotents are central.

(4) ⇒ (5) Suppose that eDSf , where e and ƒ are idempotents. Then, by Theorem

1.1.30 there exists an element a and an inverse a′ of a such that aa,a′af . Hence,

using the centrality of the idempotents e and f, we have
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e = e2 = a(a′a)a′ = afa′ = faa′ = a′aaa′

= aa′e = aea = aa′aa = f 2 = f.

and we deduce that DS ∩ (E×E) = 1E

(5) ⇒ (1). Each D − classcontainsasingleidempotent, andsoisagroup.ThusD

= H , andsoeachelementahasexactlyoneinversea−1, with the properties,

(a−1) = a, aa−1 = a, aa−1 = a−1a.

Thus S is completely regular, and so is a semilattice Y of completely simple

semigroups Sα. Now for all x, y in Sα we have xy ∈ Rx ∩ Ly, and so xDy. Thus

each Sα, is contained in a single D - class, and so has a single idempotent. Hence

each Sα is a group.

From (2) ⇒ (3) we now deduce that S is a strong semilattice of groups S[Y ;Sα;ϕα,β],and

it then follows easily that for an arbitrary x in Sα and y in Sβ,

xx−1yy−1 = eαeβ = eαβ = eβeα = yy−1xx−1

Thus S is a Clifford semigroup.

3.3 Band

Note 3.3.1. Let B be a band, Since B is completely regular, it decomposes by

Theorem 3.1.4 in to a semilattice Y of completely simple semigroups Sα(α ∈ Y ).

Each of these completely simple semigroups, being a subsemigroup of B, is a band,

and it is a band satifying the law (xyx)(xyx)′ = xx′, by Proposition 1.1.31. Since

x = x′ for every x in a band, this identity reduces to xyx = x, and so we conclude

that each Sα, is a rectangularband.

Theorem 3.3.2. Every band is a semilattice of rectangular bands.
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Remark. Every rectangular band is isomorphic to a cartesian product I × Λ with

multiplication given by,

(i, λ)(j, µ) = (i, µ)

Proposition 3.3.3. If ϕ is a morphism from a rectangular band I1×Λ1 into a

rectangular band I2 × Λ2 , then there exist maps of ϕl : I1 −→ I2 and

ϕr : Λ1 −→ Λ2 such that, for all (x1, ξ) in I1xΛ1,

(x1, ξ1)ϕ = (x1ϕ
l, ξ1, ϕ

r) (3.1)

Conversely, if I1 × I2 and Λ1 × Λ2 are arbitrary maps, then the formula (3.1)

defines a morphism from I1 × Λ1 into I2 × Λ2.

Proof. Let ϕ : I1 × Λ −→ I2× Λ be a morphism. Choose a fixed λ1 in Λ, and for

every x1 in f1 define a by x1ϕ
l.

(x1, λ1)ϕ = (xϕl, λ2)

Similarly, choose a fixed i in I1, and for every ξ1 in Λ define ξ1ϕ
r by

(i1, ξ)ϕ = (i2, ξ1ϕ
r).

then for all (x1, ξ1) in I1 × Λ1,

(x1, ξ1)ϕ = [(x1, λ1)(i1, ξ1)]ϕ = [(x1, λ1)ϕ][(i1, ξ1)ϕ]

= (x1ϕ
l, λ2)(i2, ξ1ϕ

r) = (x1ϕ
l, ξ1ϕ

l).

Conversly, if ϕ is defined by (3.1) then, for all (x1, ξ), (y1, η) in I1 × Λ,

[(x1, ξ1)(y1, η1)]ϕ = [x1, η1]ϕ = [x1ϕ
l, η1, ϕ

l] = (x1ϕ
l, ξ1ϕ

r)(y1ϕ
l, η1ϕ

r)

= [(x1, ξ1)ϕ][(y1, η1)ϕ].

Thus ϕ is a morphism.

Corollary 3.3.4. Let L1, L2 be left zero semigroups and let R1, R2 be right zero

semigroups. If ϕ is a morphism from the rectangular band L1 × R1 into the
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rectangular band L2 × R2, then there exist morphisms ϕl : L1 −→ L2, ϕ
r : R1 −→

R2 such that

(l1, r1)ϕ = (l1ϕ
l, r1ϕ

r) (3.2)

for all (l1, r1) in L1 × R1.

Conversely, for every pair of morphisms ϕl : L1 −→ L2, ϕ
r : R1 =⇒ R2, the

formula (3.2) defines a morphism from L1 ×R1 into L2 × R2.

Lemma 3.3.5. If a and b are elements in a regular semigroup S, then

[λa = λbandρa = ρb] ⇒ a = b.

Proof. Suppose that λa = λb and ρa = ρb, and let a′ ∈ V (a),b′ ∈ V (b). Then

a = aa′a = (λa, a
′)a = (λba

′) = ba′a,

and so Ra ≤ Rb. Similar arguments show that La ≤ Lb, Rb ≤ Ra, Lb ≤ La, and so

aH b. By Proposition 2.4.1 we may now Suppose that a′ and b′ have been chosen

so that aa′ = bb′ and a′a = b′b, and it then easily follows that a = ba′a = bb=b.
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Other Classes of Regular

Semigroup

4.1 Locally Inverse Semigroup

Definition 4.1.1. In every regular Semigroup S the subset eSe is clearly a sub-

semigroup for every idempotent e. It is even a regular subsemigroup, since for

every x = ese in eSe and every inverse x′ of x,

x = xx′x = (xe)x′(ex) = x(ex′e)x.

AregularsemigroupSwithsetEofidempotentswillbecalledlocallyinverseifeSeisaninversesemigroupforeveryeinE.

Note 4.1.2. If a, b are elements of a regular semigroup S with set E of idempo-

tents, then we a ≤ b if Ra ≤ Rb and (∃e ∈ E ∩Ra)a = eb.

Proposition 4.1.3. Let S be a regular semigroup with set E of idempotents then

the relation ≤ define by (4.1.2) is a partial order relation. Within E the order

coincides with the natural order among idempotents :

e ≤ f if and only if ef = fe = e.

Proof. It is clear that a ≤ a for every a in S simply choose e = aa′. Suppose now

that a ≤ b and b ≤ a. Then certainly a R b. Also, there exists idempotents e, f

in Ra = Rb such that a = eb and b = fa. Since e R f we have fe = e and it then

easily follows that a = eb = feb = fa = b

28
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To show that ≤ is transitive suppose that a ≤ b and b ≤ c. Certainly Ra ≤ Rb ≤

Rc, and there exists e in E ∩Ra and f in E ∩Rb such that a = eb and b = fc. Now

Re = Ra ≤ Rb = Rf , and so fe = e. Hence (ef)2 = e(fe)f = e2f = ef.

We now have a = (ef)c and from Ra = Refc ≤ Ref ≤ Re = Ra.

We have that ef ∈ E ∩Ra.

To prove the final assertion, observe that for all e, f in E, e ≤ f if and only if

Re ≤ Rf and there exists i in E∩Re such that e = if , that is, if and only if fe = e

and ef = e.

Theorem 4.1.4. Let a, b be elements of a regular semigroup S with set E of idem-

potents. Then the following statements are equivalent :

1. a ≤ b;

2. a ∈ bS and (∃a′ ∈ V (a))a = aa′b;

3. Ha ≤ Hb and (allb′ ∈ V (b))a = ab′a;

4. Ha ≤ Hb and (∃b′ ∈ V (b))a = ab′a.

Proof. (1) =⇒ (2) is clear, since e ∈ E ∩ Ra if and only if there exists a′ in V(a)

such that aa′ = e.

(2) =⇒ (3). We are supposing that a = bu for some u in S, and that a = (aa′)b.

Clearly we take e as aa′. Now notice that (ua′b)2 = ua′bua′b = ua′aa′b = ua′b..

So define f as ua′b, and observe that

bf = bua′b = aa′b = a.

(3) =⇒ (4). Suppose that a = eb = bf , with e, f ∈ E. Then Ra ≤ Rb and La ≤ Lb,

and so Ha ≤ Hb. Also, for every b
′ in V(b), ab′a = ebb′bf = ebf = a.

(4) =⇒ (5) is clear.

(5) =⇒ (1).Suppose that Ha ≤ Hb and that there exists an inverse b′ of b for

which a = ab′a. Certainly Ra ≤ Rb. For every inverse a′ of a we see that

a(a′ab′)a = ab′a = a and (a′ab′)a(a′ab′) = a′(ab′a)a′ab′ = a′ab′;

hence a′ab′ ∈ V (a). Let e = aa′ab′; then e ∈ E ∩ Ra. From La ≤ Lb we deduce

that a = ub for some u in S. Then eb = aa′ab′b = ab′b = ubb′b = ub = a.
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Remark. It is consequences of above theorem that order ≤ can be defined also by

the left / right duals of the one - sided definitions. Thus for example, a ≤ b if and

only if La ≤ Lb and (∃e ∈ E ∩ La.)

Result 4.1.5. In an inverse semigroup S the order relation ≤ is compatible with

the multiplication : a ≤ b and c ∈ S =⇒ ca ≤ cb and ac ≤ bc.

Theorem 4.1.6. Let S be a regular semigroup with set E of idempotents. Then

the following statements are equivalent :

1. S is locally inverse ;

2. ≤ is compatible ;

3. |S(e, f)| = 1 for all e, f in E.

Proof. (1) =⇒ (2). Let a ≤ b and let c ∈ S. Thus Ra ≤ Rb, and there exists e in

E ∩ Ra such that a = eb. Let a′ in V(a) be such that aa′ = e, choose c′ in V(c),

and let g be an element of the sandwich set S(a′a, cc′). (Thus ga′a = cc′g = g and

a′agcc′ = a′acc′.) Also v′ga′ ∈ (V ac) by Preposition 1.1.29 ,and so the element

f = acc′ga′ ∈ E ∩Rac.

Also f(bc) = acc′ga′bc = aga′bc = aga′aa′bc = aga′ebc = aga′ac = agc = ac.

We must now show that Rac ≤ Rbc.From Ra ≤ Rb we deduce that a = bu for some

u in S. Hence for all b′ in V(b)

we have (b′a)2 = b′ab′a = b′ebb′bu = b′ebu = b′ea = b′a; thus b′a ∈ E. Moreover,

b′b.b′a = b′a, b′a.b′b = b′ebb′b = b′eb = b′a, and so b′a ≤ b′b.

From a = bu = bb′bu = bb′a we deduce that aL b′a, and it follows that there exists

an inverse a′′a = b′a ≤ b′b. Also from

a = bu = bb′bu = bb′ (4.1)

we deduce a L b′a, and it follows that there exists an inverse a′′ of a such that

a′′a = b′a. To summarize, we now have
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a′′a = b′a ≤ b′b (4.2)

Also from (4.1) we deduce that

a = ba′′a. (4.3)

As before, let c′ ∈ V (c), and let h ∈ S(a′′, a, cc′). Then from (4.2) we have

(a′′ah)2 = a′′ a (ha′′a)h = a′′ah2 = a′′ah,

(b’bh)2 = b′bha′′ab′bh = b′bha′′ah = b′bh = b′bh,

and so a′′ah, b′bh ∈ E. In fact a′′ah = a′′aha′′a = b′ba′′aha′′ab′b ∈ b′bSb′b,

b′bh = b′bha′′a = b′bha′′ab′b ∈ b′bSb′b,and so both a′′ah and b′bh are idempotents

within the inverse semigroup b′bSb′b. We deduce that

a′′ah = a′′aha′′aha′′aha′′ab′bh = (a′′ah)(b′bh) = (b′bh)(a′′ah) = b′bh. Finally, de-

noting the idempotent c′ha′′acbyf , we conclude, using (4.3), that

(bc)f = bcc′ha′′ac = bhc = bb′bhc = ba′′ahc = ahc = ac, and so Rac ≤ Rbc as

required.

(2) =⇒ (3).Let g, h ∈ S(e, f), where e, f ∈ E. Then in particular fg = g and so

(gf) = g(fg)f = g2f.Moreover, f(gf) = gf, (gf)f = gf. and so gf ≤ f. Similarly

eg ∈ E and eg ≤ e. By compatibility we deduce that gh = g(fh) = (gf)h ≤ fh =

h, hg = (he)g = h(eg) ≤ he = h.

That is,(gh)h = h(gh) = gh, (hg)h = h(hg) = hg, and so gh = hg. However, by

Proposition 1.1.29, S(e, f) is a rectangular band.

Hence g = ghg = g2h = gh = hg = h(hg) = hgh = h.

We conclude that |S(e, f)| = 1.

(3) =⇒ (1).Let e ∈ E, let a ∈ eSe, and let a′ ∈ V (a) ∩ ese. Then a′a ∈ S(a′a, e),

for a′aa′a = a′a, ea′a = a′a and a′a(a′a)e = a′ae. Hence in fact, by our assumption,

a′a is the only element in S(a′a, e). By the same token, if a′′ is another inverse of a

in eSe then S(a′′a, e) = a′′a. But, by Proposition 1.1.28, S(a′a, e) = S(a′′a, e), and

so it follows that a′′a = a′a. Similarly, by considering S(e, aa′) and S(e, aa′′), we

deduce that aa′′ = aa′, and it now follows that a′′ = a′′aa′′ = a′aa′′ = a′aa′ = a′.

Hence eSe is an inverse semigroup.
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4.2 Orthodox Semigroup

Definition 4.2.1. A semigroup is called orthodox if it is regular and if its idem-

potents form a subsemigroup.

Theorem 4.2.2. Let S be a regular semigroup with set E of idempotents. Then

the following statements are equivalent :

1. S is orthodox :

2. ( ∀e, f ∈ E) fe ∈ S(e, f);

3. (∀a, b ∈ S) V (b)V (a) ⊆ V (ab);

4. (∀e ∈ E) V (e) ⊆ E.

Proof. (1) =⇒ (2). Suppose that S is orthodox, let e, f ∈ E, and let g = fe. Then

ge = fg = g, egf =(ef)2 = ef , and so g = f ∈ S(e, f) by 1.1.28.

(2) =⇒ (3). Let a, b ∈ S and let a′ ∈ V (a), b′ ∈ V (b). Then by preposition 1.1.28.

b′ga′ ∈ V (ab) for all g in S(a′, a, bb′) From (2) it thus follows that

b′a′ = b′(bb′a′a)a′ ∈ V (ab), exactly as required.

(3) =⇒ (4).Let e ∈ E and let x be an inverse of e: xex = x, exe = e. Now both

x and ex are idempotents, and so each is each is an inverse of itself. By (3) we

deduce that (ex)(xe) is an inverse of (xe)(ex), that is to say, that ex2e is an inverse

of xe2x = xex = x. Hence x = x(ex2e)x = (xex)(xex) = (xex)2 = x2, and so x is

idempotent as required.

(4) =⇒ (1).Let e, f ∈ E. By preposition 1.1.26 there exist an idempotent g in

V(e, f) (an element of the sandwich set S(e, f).But then ef, being an inverse of the

idempotent g, must itself be idempotent. Hence S is orthodox.
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Proposition 4.2.3. Let S be an orthodox semigroup with set E of idempotents.

For all a in S, e in E and a′ in V(a), the elements aea′ and a′ea are idempotent.

Proof. With the given notation,

(aea′)2 = aea′aea′= aea′aea′aa′ = a(ea′a)2a′ = aea′aa′ = aea′. Thus aea′ is an

idempotent. This proof for a′ea is similar.

Note 4.2.4. The set E of idempotents in an orthodox semigroup S forms a band

under multiplication and this is expressible as a semilattice Y of of rectangular

bands Eα(α ∈ Y ). Certainly Eα ∩ Eβ ̸= ϕ if α ̸= β, and we also have

EαEβ ⊆ Eαβ, (α, β ∈ Y ) (a)

Each Eα is a JE -class, and it will be consistent with our previous notation to

write JE
e for the rectangular band Eα containing e. The formula (a) translates to

JE
eJ

E
f ⊆ JE

ef = JE
fe(e, f ∈ E).

The equivalence JE is the minimum semilattice congruence on E. From 4.2.2 we

know that V (e) ⊂ E for every e in E. In fact, if f ∈ V (e) then efe = e, fef = f,

and it is clear that f ∈ JE
e. Conversly, if f belongs to the rectangular band JE

e

then certainly f ∈ V (e), since any 2 elements of a rectangular band are mutually

inverse.

Hence V (e) = JE
e , (e ∈ E).

Thus V (e) is determined solely by nature of a band E.

Proposition 4.2.5. Let a S, an orthodox semigroup with band E of idempotents.

If a’ is an inverse of a, then V (a) = JE
aa′a

′JE
aa′.

Proof. Let e ∈ JE
a′a and f ∈ JE

aa′ .Then a
′aea′a = a′a, aa′faa′ = aa′, and so

a(ea′f)a = aa′aea′aa′aa′faa′a = a(a′aea′a)a′(aa′faa′)a = aa′aa′aa′a = a,

and

(ea′f)a(ea′f) = ea′aa′faa′aa′aea′aa′f = ea′(aa′faa′)a(a′aea′a)a′f
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Thus JE
a′aa

′JE
aa′ ⊆ V (a).

Conversely, suppose that a∗ ∈ V (a). Then

a∗ = a∗aa∗ = a∗aa′aa∗. (4.4)

Now, from

(a∗a)(a′a)(a∗a) = a∗(aa′a)a∗a = a∗aa∗a = a∗a and (a′a)(a∗a)(a′a) = a′(aa∗a)a′a =

a′aa′a = a′a we deduce that a∗a ∈ JE
a′a. A similar argument shows that

aa∗ ∈ JE
aa′ , and it is now immediate from (4.4) that V (a) ⊆ JE

a′aa
′JE

aa′ .

Theorem 4.2.6. A regular semigroup S is orthodox if and only if

(∀a, b ∈ S)[V (a) ∩ V (b) ̸= 0 =⇒ V (a) = V (b)].

Proof. Suppose first that S is orthodox, and that a, b in S are such that

x ∈ V (a) ∩ V (b). Then a and b both belong to V (x) and so, by Theorem 1.1.30,

xaRsxb and axLsbx. Now xa, xb, ax, bx ∈ E, and so,and so, by Proposition 1.1.31,

xaRExb and axLEbx. Certainly xaJExb and axJEb, and so

V (a) = JE
xaxJ

E
ax = JE

xbxJ
E
bx = V (b).Conversely, suppose that S is regular and

that we have the given impli cation. Let e, f ∈ E and let g ∈ S(e, f). Then from

ge = g we may deduce that eg is idempotent. Also g(eg)g = g, (eg)g(eg) = eg,

and so we have that g ∈ V (g) ∩ V (eg). From our assumption we deduce that

V (g) = V (eg). Hence in particular ef ∈ V (eg), and so

ef = (ef)(eg)(ef) = (ef)(efg)(eg) = (eg)2. Thus S is Orthodox.

Result 4.2.7. The equivalence relation γ = (x, y) ∈ SxS : V (x) = V (y) on an

orthodox semigroup S turns out to be a congruence.

Theorem 4.2.8. Let S be an orthodox semigroup with set E of idempotents. Then

the equivalence γ defined by 4.2.7 is the smallest inverse semigroup congruence on

S. Moreover, for each a in S and each a′ in V (a), aγ = JE
aa′aJ

E
a′a.

Proof. To show that γ is a congruence, consider (a, b) in γ and let c ∈ S. Then,

for every z in V(a) (= V(b)) and for every c’ in V(c), we have xc′ ∈ V (ca)∩V (cb).

Hence V(ca) = V(cb) by Theorem 4.2.6. A similar = argument shows that V(ac)

= V(bc), and so y is a congruence.The quotient S|γ is certainly regular. By
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Lallement’s Lemma each idempotent of S/γ is of the form eγ , where e is an

idempotent of S. Now, for any two idempotents e, f in E,

V (ef) = JE
ef − JE

fe

= V (fe),

and from this we deduce that (eγ)(fγ) = (fγ)(eγ) in S/γ.

Finally, to show that γ is the least inverse semigroup congruence, let ρ be a

congruence on S such that S/ρ is an inverse semigroup, let (a, b) ∈ γ, and let

x ∈ V (a)(= V (b)). Then both aρ and bρ are inverses of xρ in the inverse semigroup

S/ρ, and so aρ = bρ. We have shown that γ ⊆ ρ.

To prove the final statement of the theorem, suppose that b ∈ aγ. Then V(a) =

V(b), and so a′ ∈ V (b) for every a′ in V(a). It now follows from Proposition 4.2.5

that

b ∈ V (a′) = JE
aa′aJ

E
a′a.

Conversely, if b ∈JE
aa′aJ

E
a′a = V (a′), then V (a)∩V (b) ̸= ϕ, and so V(a) = V(b)

by Theorem 4.2.6. Thus b ∈ aγ, as required.

4.3 Semiband

Definition 4.3.1. A regular semigroup generated by its idempotents is called a

semigroup.

Note 4.3.2. 1. Semibands differ from locally inverse and Orthodox semigroups

in the sense that they are not generalization of inverse semigroups.

2. A regular semigroup is orthodox and a semiband if and only if it is a band,

and it is both an inverse semigroup and a semiband if and only if it is a

semilattice.

3. Consider the set Singn, of all singular maps from the set [n] = {1, 2, ..., n}

into itself. (By a singular map we mean one that is not a bijection.) This is

a finite semigroup, of order n2 − n!.
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Theorem 4.3.3. For all n ≥ 2, the semigroup Singn, is a semiband.

Proof. To show that Singn, is regular, let a Singn, and define ε : [n] −→ [n] as

follows: if j ∈ imα, let jε be an arbitrarily chosen element of jα−1; if j ∈ imα,

let jε be an arbitrarily chosen element of [n]. Then it is clear that iαεα = iα for

all i in [n]. Of course may be a permutation, but be a permutation, but certainly

η = εαε is singular, and αηα = αεαεα = αεα = α.The semigroup Singn, has n-1

J-classes J1, ....., Jn−1, where Jr = {α ∈ Singn, |imα| = r}(r = 1, ..., n − 1). Let

En−1 denote the set of idempotents in Jn−1. A typical element ε of En−1 has image

[n]|{i} of cardinality n-1. The map ε acts identically on [n]|{i}, and sends i to

some element j ̸= i. We denote this map by

 i

j

 ; it maps i to j and all other

elements identically. Notice that we can easily deduce that En−1 = n(n− 1).

Lemma 4.3.4. Let α ∈ Jr, where 1rn− 1. Then there exist ε in En−1 and β in

Jr+1 such that α = εβ.

Proof. Write imα = (b1, b2, ..., br), and let biα
−1= Ai, (i=1,2,...,r). It is convenient

to write

A1 A2 . . . Ar

b1 b2 . . . br


in an obvious extension of a familiar notation. The sets Ai, form a partition of

[n]. Since not all of the sets Ai, are singletons, we may assume without loss of

generality that A1 = (a1, a
′
1, ...) has at least two elements.

Then let ε =

 a1

a2

,

β =

A|{a1} A2 . . . Ar|{a1}

b1 b2 . . . brbr+1


where br+1 /∈ imα, and verify that α = εβ.

Corollary 4.3.5. Every finite semigroup is embeddable in a finite semiband.
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Proof. Let S be a finite semigroup and let X = S1∪{y, z}, where y, z /∈ S1. Define

a map α : S → TX by sα = ρs, where

xρs = xs if x ∈ S1,

yρs = zρs = z.. It is a routine matter to verify that α is a monomorphism.

Moreover, it is clear that sα is a singular element of TX for every s in S, and so α

embeds S in the finite semiband Sing|x|.

Theorem 4.3.6. Every semigroup is embeddable in a semiband.

Proof. Let S be a semigroup, and let T be a regular semigroup containing S. It

is always possible to find such a semigroup T: for example, take T = TS1 . Let I

be a set containing a named element 1, and such that |I/{1}|2 T, and define B to

be the Rees matrix semigroup M[T 1; I; I;P ], where the matrix P = (pij) over T
1

has the properties that pi1 = p1i = 1 (i ∈ I) and T ⊆ {pij : i, j ̸= 1}.

The elements (1, 1, i) and (i, 1, 1) of B are evidently idempotent for all values of i.

Also, since each t in T is equal to some pkl, we have (i, t, j) = (i, 1, 1)(1, 1, k)(l, 1, 1)(1, 1, j),

a product of idempotents. Thus B is generated by its idempotents. Next, B is

regular, for if (i, t, j) ∈ T and if t′ is an inverse of t in the regular semigroup T,

then

(i, t, j)(1, t′, 1)(i, t, j) = (i, tt′t, j) = (i, t, j).

Finally, it is clear that the map t 7→ (1, t, 1) embeds T in B, and so S, as required,

is embedded in a semiband B.



Conclusion

The regular semigroup which can be considered as the core semigroup since groups

are regular semigroup with a unique idempotent. The idempotent plays a prodom-

inat role in the structure of regular semigroup. Locally inverse semigroup and

Orthodox semigroups are regular generalization of inverse semigroups. A regular

semigroup S with set E of idempotents called locally inverse if eTe is an inverse.

A Orthodox semigroup is regular semigroup in which the idempotent form a sub-

semigroup. The Band B is regular if it satisfies the identity. Completely regular

semigroup form a prominent class of mathematical structures that have been ex-

tensively studied in semigroup theory, algebra and topology.

38



Reference

[1] John. M.Howie,Fundamentals of Semigroup Theory, Oxford university Press

Inc, 1995.

[2] P. A Grillet,Semigroups : An Introduction to the structure theory, CRC Press,

1995.

39


